

YAKIMA/KLICKITAT FISHERIES PROJECT MONITORING AND EVALUATION Yakima Subbasin

PROJECT NUMBER 1995-063-25
Report covers work performed under BPA contract #00056662 REL 263
Report was completed under BPA contract #00056662 REL 271

FINAL REPORT

For the Performance Period May 1, 2022 through April 30, 2023 September 14, 2023

Joe Blodgett, Policy Advisor/Project Coordinator Mark Johnston, Research Scientist/Project Lead Bill Bosch, Research and Data Coordinator/Editor Yakima/Klickitat Fisheries Project

THE CONFEDERATED TRIBES AND BANDS OF THE YAKAMA NATION Toppenish, WA 98948

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the authors' and do not necessarily represent the views of BPA.

This report should be cited as follows:

Blodgett, J., M. Johnston, and B. Bosch (editors). 2023. Yakima-Klickitat Fisheries Project Monitoring and Evaluation – Yakima Subbasin, Final Report for the performance period May/2022-April/2023, Project number 1995-063-25, 382 electronic pages.

Table of Contents

List of Tables	i
List of Figures	111
Acknowledgements	1
Executive Summary	3
Introduction	
Fish Population Status Monitoring	12
Status and Trend of Adult Fish Populations (Abundance)	12
Status and Trend of Adult Productivity	17
Status and Trend of Juvenile Abundance	24
Status and Trend of Juvenile Migration Survival to McNary Dam	30
Status and Trend of Juvenile Productivity (smolt-to-adult returns)	32
Status and Trend of Spatial Distribution (Redd Counts)	39
Status and Trend of Diversity Metrics	46
Habitat Monitoring	50
Status and Trend of Fine Sediment	50
Harvest Monitoring	54
Marine and Mainstem Columbia Fisheries	54
Yakima Subbasin Fisheries	58
Hatchery Research	62
Effect of Artificial Production on the Viability of Natural Fish Populations	62
Effectiveness of Hatchery Reform	67
Predation Management and Predator Control	72
Avian Predation Index	72
Fish Predation Index and Predator Control	79
Adaptive Management and Lessons Learned	
References and Project-related Publications	
APPENDICES	99
List of Tables	
Table 1. Adult-to-adult productivity indices for upper Yakima wild/natural spring	
Chinook	19
Table 2. Adult-to-adult productivity indices for Naches River Subbasin wild/natural	0.1
spring Chinook	
Table 3. Adult-to-adult productivity indices for Cle Elum SRF spring Chinook	
Table 4. Estimates of adult-to-adult productivity indices for Yakima Basin natural-or	-
coho	23
Table 5. CESRF total releases of Spring Chinook by brood year, treatment, and	26
acclimation site.	
Table 6. Total releases of Coho by brood year, life stage, and brood source	
Table 7. Total releases of fall-run Chinook by release year and release site	
Table 8. Total releases of summer-run Chinook by release year and release site	
Table 9. Estimated smolt passage at Prosser Dam for Yakima Basin wild/natural and hatchery-origin spring Chinook and coho	
natcher y-origin spring Chinook and Cono	49

i

Table 10. Estimated smolt passage at Chandler and smolt-to-adult return indices
(Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and
CESRF-origin spring Chinook
Table 11. Average combined hatchery- and natural-origin smolt counts at Prosser for fish
returning at age-3, -4, and -5, combined adult returns to Prosser Dam of all age
classes, and estimated Prosser smolt-to-adult return indices for Yakima River fall-
run Chinook for adult return years 1988-2022.
Table 12. Preliminary estimates of Prosser-to-Prosser smolt-to-adult survival (SAR)
indices for adult returns from hatchery- and natural-origin coho for the Yakima
reintroduction program, juvenile migration years 2000-2021
Table 13. Preliminary McNary Dam smolt to Bonneville Dam adult SAR-indices for
hatchery-origin PIT-tagged summer and fall-run chinook released in the Yakima
subbasin by brood year and life stage at release, 2006-2015 (PTAGIS query run May
6, 2019)
Table 14. Preliminary McNary Dam smolt to Bonneville Dam age-3 adult return (SAR)
indices for hatchery-origin PIT-tagged coho released as smolt (sm) or parr ^a in Lower
Yakima (LY), Naches (Na), and Upper Yakima (UY) mainstem or tributary areas,
brood years 2003-2014 (PTAGIS queries run April 16, 2019)
Table 15. Yakima Basin spring Chinook redd counts and distribution, 1981 – present 40
Table 16. Yakima Basin coho redd counts and distribution, 1998 – present
Table 17. Results from Taneum Creek adult out-plant study
Table 18. Sex ratio of upstream migrating fall Chinook sampled at the Prosser Dam right
bank denil ladder and fish trap, 2001-present. 47
Table 19. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm),
and weights (pounds) of upstream migrating fall Chinook sampled at the Prosser
Dam right bank denil ladder and fish trap, 2001-present
Table 20. Sex ratio of upstream migrating coho sampled at the Prosser Dam right bank
denil ladder and fish trap, 2001-present
Table 21. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm),
and weights (pounds) of upstream migrating coho sampled at the Prosser Dam right
bank denil ladder and fish trap, 2001-present
Table 22. Age composition of returning hatchery-origin PIT-tagged summer and fall-run
chinook released in the Yakima subbasin as subyearling or yearling fish (data from
PTAGIS query run May 1, 2019)
Table 23. Marine and freshwater recoveries of CWTs from brood year 1997-2017
releases of spring Chinook from the CESRF as reported to the Regional Mark
Information System (RMIS) Dec. 15, 2022
Table 24. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook
in Columbia River mainstem and terminal area fisheries, 1983-present
Table 25. Spring Chinook harvest in the Yakima River Basin, 1983-present 59
Table 26. Estimated summer- and fall-run Chinook return, escapement, and harvest in
the Yakima River, 1998-2022. Data from WDFW and YN databases
Table 27. Estimated Coho return, escapement, and harvest in the Yakima River, 1999-
2022. Data from WDFW and YN databases

Table 28. Escapement (Roza Dam counts less brood-stock collection and harvest above Roza) of natural- (NoR) and hatchery-origin (HoR) spring Chinook to the upper
Yakima subbasin, 1982 – present.
Table 29. Yakima River avian predators
Table 30. Total piscivorous avian species observed at Chandler juvenile bypass and Wanawish Dam
Table 31. Total monthly piscivorous avian species observed at Chandler juvenile bypass
and Wanawish Dam
Table 32. Yakima River Fish Species
List of Figures
Figure 1. Yakima River Basin and Yakama Nation/YKFP-related artificial production and monitoring facilities (map provided by Paul Huffman)
Figure 2. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Prosser Dam, 1982-
present
Figure 4. Estimated counts of marked (presumed hatchery-origin) and unmarked (presumed natural-origin) Coho (adults and jacks) at Prosser Dam 1986-present 1
Figure 5. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Roza Dam, 1982-
present
Figure 7. Passage timing of adult and jack Chinook at Prosser Dam in 2022 by run (see Methods).
Figure 8. Upper Yakima wild/natural spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2017) commencement of supplementation.
Figure 9. Naches subbasin spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2017) commencement of supplementation
in the Upper Yakima River.
Figure 10. Productivity indices for age-3 natural-origin coho, brood years 2001-2019 2. Figure 11. Box plot showing the 24-year average survival probabilities of natural-origin
(Natural) and hatchery-origin (Hatchery) spring Chinook Salmon smolts (S. Pandit,
Appendix D). A. is the comparison between Early- and Late-migrating natural-
origin smolts; and B. is the comparison of Late hatchery- and natural-origin smolts.
Figure 12. Average annual survival rate (release site to Prosser and McNary Dams) of juvenile Summer Chinook smolts migrating from 2010 through 2022 (S. Pandit,
Appendix F)
Figure 13. Redd Counts upstream of Prosser Dam in the Yakima River Basin by species 1981-present

Figure 14. Teanaway River Spring Chinook redd counts, 1981-2022 (vertical lines
denote pre- and post-supplementation periods) and the proportion of natural-origin
(NO) carcasses observed in intensive spawning ground surveys, 2002-2010 41
Figure 15. Distribution of summer and fall run Chinook redds in the Yakima River Basin
(above Prosser Dam) based on redd observations from 2014 to 2018
Figure 16. Fall Chinook redd counts above and below Prosser Dam, 1961-present, for
years in which surveys were conducted and data are available. Data from YN,
WDFW, and Pacific Northwest National Laboratory files. Note that survey
completeness is highly variable due to annual flow and turbidity conditions; survey
data are partial or incomplete for most years prior to 2000
Figure 17. Distribution of coho redds in the Yakima River Basin
Figure 18. Adult return timing at Prosser Dam of PIT-tagged summer- and fall-run
Chinook reared at the Marion Drain and Prosser Hatcheries and released as
subyearlings, pooled for return years 2009-2018.
Figure 19. Overall Fine Sediment (<0.85mm) Trends with 95% confidence bounds in the
Little Naches River Drainage, 1992-2022.
Figure 20. Fine Sediment Trends in the South Fork Tieton River, 1999-2015. Note:
Data for 2007 were collected from only 1 Riffle. Data courtesy of U.S. Forest
Service
Figure 21. Overall average percent fine sediment (< 0.85 mm) in spawning gravels of the
Upper Yakima River, 1997-2022
Figure 22. Distribution of coded-wire tag recoveries of Yakima Basin summer/fall run
Chinook releases in marine, mainstem Columbia River, and Yakima Basin fisheries.
Data retrieved from the regional mark information system (RMIS) for brood year
1997-2007 recoveries
Figure 23. Map of the Yakima River Basin, Cle Elum Supplementation and Research
Facility (CESRF) locations, and timeline of the spring Chinook supplementation
program
Figure 24. Spring Chinook redd counts in the supplemented Upper Yakima (red bar)
relative to the un-supplemented Naches (control; blue bar) for the pre- (1981-2000)
and post-supplementation (2001-2022) periods
Figure 25. Natural-Origin returns of Spring Chinook in the supplemented Upper Yakima
(red bar) relative to the un-supplemented Naches (control; blue bar) for the pre-
(1982-2004) and post-supplementation (2005-2022) periods
Figure 26. Hypothetical outcomes of trait divergence (domestication effects) over time
for a segregated (hatchery-control or HC) line of fish, compared to an integrated
(supplementation or S) line of fish and a wild (wild-control or WC) line of fish (D.
Fast, Yakama Nation) 68
Figure 27. Estimated genetic divergence (variation) for integrated (INT blue), segregated
(SEG red), and wild founder (black) spring Chinook in the CESRF program after 4
parental-generations of the hatchery program (P1=1998, F1=2002, F2=2006,
F3=2010, F4=2014; updated from Figure 4 in Waters et al. 2015)
Figure 28. Avian "hotspot" locations and previous year's predator survey locations 72
Figure 29. Wanawish Dam hotspot zones
Figure 30. Chandler hotspot zones. Circle represents juvenile bypass outfall pipe 75
Figure 31. Roza dam hotspot zones

Figure 32. Daily bird count in the sampling period in both sampling areas	78
Figure 33. Relationship between river flow and avian species observed at study sites	79
Figure 34. Fish Predator Survey Locations	81
Figure 35. Species abundance in 2022. Values displayed represent total abundance of	
each species	83
Figure 36. Reach specific species abundance during sampling period 2022	84
Figure 37. Total abundance of primary predatory fish species observed by the sampling	r
date	85

Acknowledgements

Monitoring and evaluation efforts in the Yakima River Basin are the result of a cooperative effort by many individuals from a variety of agencies including the Yakama Nation Fisheries Program, the Washington Department of Fish and Wildlife, the United States Fish and Wildlife Service, the Columbia River Inter-Tribal Fish Commission, the National Oceanic and Atmospheric Administration Fisheries department as well as some consultants and contractors. We also wish to acknowledge and thank the Yakama Nation Tribal Council, U.S. Bureau of Reclamation, Yakima Subbasin Fish and Wildlife Recovery Board, Pacific States Marine Fisheries Commission, U.S. Forest Service Naches Ranger District, University of Idaho, Lars Mobrand and associates, University of Washington, and Central Washington University for their many contributions to this project including both recommendations and data services.

The core project team includes the following individuals: Joe Blodgett, Mark Johnston, Bill Bosch, Todd Newsome, Melinda Davis, Michael Porter, Trenton DeBoer, Sara Sohappy, Chris Frederiksen, Shubha Pandit, Andrew Matala, Daylen Isaac, Anneliese Myers, Zack Mays, Ukesh Koju, Jim Matthews, and a number of technicians from the YN; Charles Strom and a number of assistants from the Cle Elum Supplementation and Research Facility; Michael Fiander and the crew at the Prosser Hatchery; Anthony Fritts, Gabe Temple, Christopher Johnson, and a number of assistants from the WDFW; We also receive considerable support from the USFWS; Don Larsen, Andy Dittman, and assistants from NOAA Fisheries; Doug Hatch, Hayley Nuetzel, and many others at the Columbia River Inter-Tribal Fish Commission; and Kerry Naish and others at the University of Washington. The following individuals are now retired but we acknowledge their many and invaluable contributions over the years: Dave Fast, David Lind, Bill Fiander, Joe Hoptowit, and Paul Huffman of the YN, Curt Knudsen from Oncorh Consulting and Doug Neeley from IntSTATS Consulting.

Special acknowledgement and recognition is owed to all of the dedicated Yakama Nation and YKFP personnel working on various tasks including Ray Decoteau, Joe Yallup, Joe Jay Pinkham III (retired), Leroy Senator (retired), Sy Billy, Wayne Smartlowit, Morales Ganuelas, Pharamond Johnson, Steve Salinas, Shiela Decoteau, Jimmy Joe Olney, Conan Northwind, Quincy Wallahee, Andrew Lewis, Nate Pinkham, Gene Sutterlick, Germaine Hart, Jamie Bill, Nate Pinkham, William Manuel, Terrance Compo, Levi Piel, Pete Mamizuka Jr, Winna Switzler, Florence Wallahee, Ted Martin and Arnold Barney. The accomplishments and achievements documented here are a direct result of their dedication and desire to seek positive results for the betterment of the resource. Also, these achievements are attainable

because of the efficient and essential administrative support received from all of the office and administrative support personnel for the YKFP including: Rubi Rodriguez, Shirley Alvarado, and Adrienne Wilson.

We would especially like to thank former contributors to the Yakima/Klickitat Fisheries Project including Bruce Watson, Joel Hubble, Steve Schroder, Todd Pearsons, Craig Busack, Ray Brunson, Joy Evered, and Bill Hopley. These individuals put in countless hours of hard work during the planning, design, and implementation of this project. Their contributions helped to lay a solid foundation for this project and our monitoring and evaluation efforts. Dan Barrett (retired) served as the manager of the CESRF from 1997-2002. He helped to lay a solid foundation for the critical work done day in and day out at the Cle Elum facility.

This work is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. Michelle O'Malley is BPA's contracting officer and technical representative (COTR) for this project. David Byrnes and Patricia Smith served as COTRs in the past and contributed substantially to the project over the years.

Executive Summary

The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of data collection and management, physical facilities, habitat enhancement and management, and experimental design and research on fisheries resources. The YKFP is attempting to evaluate all stocks historically present in the Yakima Subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species. This project and report address regional monitoring and evaluation strategies and sub-strategies as they apply to spring Chinook, summer/fall Chinook, and coho work in the Yakima Subbasin. This project (199506325) is related to numerous other projects in the Yakima Subbasin; additional information is available in the annual reports of these related projects.

The YKFP began a spring Chinook salmon hatchery program at the Cle Elum Supplementation and Research Facility (CESRF) near Cle Elum on the upper Yakima River in 1997. This program is a supplementation effort targeting the upper Yakima River population and is designed to test whether artificial propagation can be used to increase natural production and harvest opportunities while limiting ecological and genetic impacts. It is an integrated hatchery program because only natural-origin brood-stock is used and returning hatchery-origin adults are allowed to spawn in the The program employs "best practice" hatchery management principles wild. including reduced pond densities, strict disease management protocols, random brood-stock selection, and factorial mating to maximize effective population size. Fish are reared at the central facility, but released from three acclimation sites located near the central facility at: Easton approximately 25km upstream of the central facility, Clark Flat about 25km downstream of the central facility, and Jack Creek about 12km upstream from the Teanaway River's confluence with the Yakima River. The CESRF collected its first spring Chinook brood-stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. The first generation of offspring of CESRF and wild fish spawning in the wild returned as adults in 2005. The program uses the adjacent, un-supplemented Naches River population as an environmental and wild control or reference system.

Adult returns of fall Chinook to the Yakima River Basin consist mostly of hatcheryorigin fish returning from releases averaging 1.6 million Upriver Brights annually from the Prosser Hatchery which have occurred since 1983. Summer-run Chinook were extirpated from the Yakima Basin by 1970. To increase the temporal and spatial distribution of summer/fall run Chinook in the Yakima River Subbasin, the program began releases of Wells Hatchery summer-run Chinook in the Yakima River Basin in 2009. Coho were extirpated from the Yakima Subbasin by the early 1980s. Pursuant to *U.S. v. Oregon* court-mandated agreements, substantial numbers (annual average > 700,000) of hatchery-reared coho salmon were released into the Yakima River since the mid-1980s. Prior to 1996 the primary purpose of releases was harvest augmentation and fish were released in sub-optimal spawning and rearing areas below Wapato Dam. With the inception of the YKFP in 1996, the objective of the coho program became "to determine the feasibility of reestablishing a naturally spawning coho population" and releases were moved upriver to more suitable habitats for natural coho.

Annual abundance of spring Chinook at Prosser Dam has increased from a 1982-2000 average of about 4,000 fish to a 2001-2022 average of about 9,100 fish. These increases can be attributed to returns from the Cle Elum supplementation program beginning in 2001, improved freshwater passage conditions, improved marine survival, and habitat restoration and enhancement work. Annual abundance of summer/fall Chinook at the Yakima River mouth has increased from a 1983-1999 average of about 1,200 fish to a 2000-2022 average of about 6,200 fish. While this increase coincides with improved ocean conditions, some of the increase may also be due to improved passage in the mainstem Columbia River, and improvements in spawning and rearing protocols. Approximately 370 summer-run Chinook were estimated to pass above Prosser Dam in 2022. Adult passage of Coho Salmon at Prosser Dam in 2022 was approximately 6,370 fish. Coho returns to Prosser averaged over 6,000 fish from 1998-2022 (an order of magnitude improvement from the average for years prior to the project) including estimated returns of wild/natural coho averaging over 800 fish annually since 2001.

Trends in adult productivity indices for Yakima Basin natural-origin spring Chinook appear to be very similar for both Upper Yakima and Naches populations. Trends in adult productivity indices for natural-origin coho are not as clear. Under present conditions, productivity for spring Chinook appears to peak at about 1,000 to 1,500 spawners and decline as spawner abundance approaches 2,000 fish or greater. These data indicate that density-dependent limiting factors depress natural productivity at fairly low population abundance in the Yakima River Basin. Until these factors are fully addressed, supplementation yields higher overall productivity rates and can be used to return adults to fisheries and to augment natural spawning populations.

For smolt migration years 2000 to present, annual abundance estimates of juvenile smolts migrating downstream at Prosser Dam averaged 201,770 wild/natural spring Chinook, 323,920 CESRF-origin spring Chinook, 41,600 wild/natural-origin coho, and 269,900 hatchery-origin coho. Preliminary smolt-to-adult survival indices averaged approximately 2.3% and 2.8% for natural-origin spring Chinook and coho, respectively. Because of many complexities associated with the production of smolt indices, these data are useful for analysis of trends but should not be used as direct citations of, or for comparisons of marked and unmarked, smolt-to-adult survival rates. Substantial juvenile mortality occurs as smolts migrate through the Yakima River system. Strategies have been proposed to address limiting factors and improve survival of emigrating Yakima Basin juveniles. As these strategies are implemented, we expect smolt and smolt-to-adult survival to improve.

Spatial distribution of spring Chinook spawners has increased as a result of acclimation site location, salmon homing fidelity and more fully seeding preferred spawning habitats. Spring Chinook redd counts in the Teanaway River increased from a pre-supplementation average of 3 redds per year to a post-supplementation average of 49 redds per year. Fall Chinook redd distribution in the Yakima River Basin appears to be experiencing a transition with an increasing proportion of redds observed above Prosser Dam in the most recent decade. This change is primarily attributed to substantial changes in lower Yakima River habitats in recent years. Redd counts and spatial distribution of coho have increased substantially. In 2022, 432 coho redds were observed in tributaries in the Naches and Upper Yakima Subbasins.

Monitoring and evaluation of diversity metrics is primarily focused on the CESRF spring Chinook program in the Upper Yakima River. Generally, we have detected small, but significant differences between hatchery- and natural-origin fish in some juvenile and adult traits with many results already published in the peer-reviewed literature.

Overall average fine sediment levels in the Naches and Upper Yakima River subbasins over many years of sampling continue to trend downward.

We believe Yakima Basin spring Chinook contribute minimally to marine fisheries as their spatial and temporal ocean migration patterns do not appear to intersect with marine fisheries. However, Yakima Basin fall- and summer-run Chinook and coho do contribute substantially to marine fisheries and to mainstem Columbia River fisheries from the mouth to the Hanford Reach area. Recreational spring Chinook fisheries have returned to the Yakima River Basin after a 40-year absence. This has contributed to improved relationships between all the Basin's stakeholders and increased opportunities for collaboration.

Supplementation has increased spring Chinook redd abundance in the Upper Yakima relative to the Naches control system. We observed an average proportionate increase in redd counts in the upper Yakima nearly 5 times greater than that in the Naches system from the pre- to post-supplementation periods. Natural-origin returns of adult spring Chinook in the post-supplementation period (2005-2022) are trending downward relative to the pre-supplementation period (1982-2004) in both the Upper Yakima and Naches Rivers. Alarmingly, natural-origin return abundance in the Naches River (combined Naches and American populations) declined to an estimated 160 fish in 2019, a population level considered "at high risk of extinction" in a seminal publication that led to the ESA-listing of many Columbia River populations in the early 1990s. After several generations of study, the results (many of which are published in the peer reviewed literature) from the spring chinook supplementation program in the Upper Yakima River demonstrate that a well-designed and carefully managed integrated hatchery program using 100% natural-origin broodstock can produce fish for harvest and return fish to the natural spawning grounds with minimal negative impacts to the target ecosystem. Coho re-introduction research in the published literature suggests that hatchery-origin coho, with a legacy of as many as 10 to 30 generations of hatchery-influence, can reestablish a naturalized population after as few as 3 to 5 generations of out-planting in the wild. However, our study results also confirm a point made in many scientific reports and publications: long-term success of hatchery production projects and the sustained health of natural populations requires large-scale, ecosystem-level habitat recovery programs.

YKFP efforts to monitor and evaluate hatchery reform focus on the CESRF spring Chinook program which was designed explicitly for this purpose from its inception. By designing the program to use only natural-origin fish for brood-stock, the program has demonstrated reduced genetic divergence for the integrated program compared to a traditional segregated hatchery program. The CESRF is also meeting or exceeding scientific recommendations for proportionate natural influence (PNI) on an annual basis with a 22-year mean annual PNI of 65%. The project is thus far meeting or exceeding most other established objectives related to hatchery reform.

Major piscivorous predators in the Yakima River Basin include: common mergansers, American white pelicans, double-crested cormorants, gulls, great blue herons, northern pike minnows, and smallmouth bass. The project has initiated efforts to control the pike minnow and smallmouth bass populations.

Project results are communicated broadly through the annual <u>science and management conference</u>, technical reports and peer-reviewed journal publications (see

references and project-related publications), and via several related web sites described in Appendix A.

Introduction

The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of experimental design and research on fisheries resources, physical facilities, habitat enhancement and restoration, and data collection and management. Consistent with Wy-Kan-Ush-Mi Wah-Kish-Wit (CRITFC 1995) and using principles of adaptive management (BPA 1996; Salafsky et al. 2001), the YKFP is attempting to evaluate all stocks historically present in the Yakima Subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species.

The original impetus for the YKFP resulted from the landmark fishing disputes of the 1970s, the ensuing legal decisions in *United States versus Washington* and *United States* versus Oregon, and the region's realization that lost natural production needed to be mitigated in upriver areas where these losses primarily occurred. The YKFP was first identified in the NPCC's 1982 Fish and Wildlife Program (FWP) and supported in the U.S. v Oregon 1988 Columbia River Fish Management Plan (CRFMP). A draft Master Plan was presented to the NPCC in 1987 and the Preliminary Design Report was presented in 1990. In both circumstances, the NPCC instructed the Yakama Nation, WDFW and BPA to carry out planning functions that addressed uncertainties in regard to the adequacy of hatchery supplementation for meeting production objectives and limiting adverse ecological and genetic impacts. At the same time, the NPCC underscored the importance of using adaptive management principles to manage the direction of the Project. The 1994 FWP reiterated the importance of proceeding with the YKFP because of the added production and learning potential the project would provide. The YKFP is unique in having been designed to rigorously test the efficacy of hatchery supplementation. Given the current depressed status of many salmon and steelhead stocks, and the heavy reliance on artificial propagation as a recovery tool, YKFP monitoring results have great region-wide significance.

Supplementation is envisioned as a means to enhance and sustain the abundance of wild and naturally-spawning populations at levels exceeding the cumulative mortality

burden imposed on those populations by habitat degradation and by natural cycles in environmental conditions. A supplementation hatchery is properly operated as an adjunct to the natural production system in a watershed. By fully integrating the hatchery with a naturally-producing population, high survival rates for the component of the population in the hatchery can raise the average abundance of the total population (hatchery component plus naturally-producing component) to a level that compensates for the high mortalities imposed by human development activities and fully seeds the natural environment. However, it is important to recognize that "rebuilding natural populations will ultimately depend on improving habitat quality and quantity" (ISRP 2011, Venditti et al. 2017) of which habitat connectivity is an essential component (CRITFC 1995, Milbrink et al. 2011). Hatchery programs, even "state of the art" integrated supplementation programs designed to follow all of the best management practice recommendations (Cuenco et al. 1993, Mobrand et al. 2005), do not directly affect any of these habitat parameters which are vital to improving natural productivity. Therefore, the YKFP is working with partners in multiple forums to implement habitat restoration and water resource management projects designed to address factors limiting productivity (see Yakima Subbasin, Recovery, and Integrated plans).

The objectives of the YKFP are to: enhance existing stocks; re-introduce extirpated stocks; protect and restore habitat in the Yakima Subbasin; operate using a scientifically rigorous process that will foster application of the knowledge gained about hatchery supplementation and habitat restoration throughout the Columbia River Basin; and use Ecosystem Diagnosis and Treatment (EDT) and other modeling tools to facilitate planning for project activities. In strictly scientific terms the stated purpose of the project is, "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits" (RASP 1992, BPA 1996). WDFW is addressing some critical uncertainties (see Columbia River Basin Research Plan and Critical Uncertainties for the Columbia River Basin Fish and Wildlife Program) related to genetic and ecological interactions under project 1995-064-25. We are working jointly with WDFW and CRITFC (2009-009-00) to address fish propagation, predation, harvest, and monitoring and evaluation methodology uncertainties including:

<u>Fish Propagation Question 1</u>. Are current propagation efforts successfully meeting harvest and conservation objectives while managing risks to natural populations?

- 1.2. Can hatchery production programs meet adult production and harvest goals (integrated and segregated) while protecting naturally spawning populations?
- 1.4. What is the magnitude of any demographic benefit or detriment to the production of natural-origin juveniles and adults from natural spawning of hatchery-origin supplementation adults?
- 1.5. What are the range, magnitude and rates of change of natural spawning fitness of integrated (supplemented) populations, and how are these related to management rules including the proportion of hatchery fish permitted on the spawning grounds, and the proportion of natural origin adults in the hatchery broodstock?

<u>Predation Question 1</u>. Are the current efforts to address predation and reduce numbers of predators effective?

<u>Predation Question 2</u>. Are there actions other than removing predators that could reduce predation on listed species?

<u>Harvest Question 1</u>. Do current harvest and escapement strategies provide the expected results in supporting recovery efforts and providing harvest opportunities?

Monitoring and evaluation methods Question 1. Are current methods to ... count fish and to measure productivity adequate to cost effectively inform decisions?

Monitoring and evaluation methods Question 2. Are there innovative methods for counting fish and measuring their productivity that would better inform decisions?

Data and research findings are presented in peer-reviewed scientific publications as information matures and time and resources allow. YKFP-related project research in the Yakima River Basin has resulted in the publication of over 60 manuscripts in the peer-reviewed literature (see References and Project-Related Publications). A number of Yakima Basin studies have already been published relating to elements of the Regional Assessment of Supplementation Project (RASP) definition of supplementation. These include: discussion and establishment of ecological risk guidelines (Pearsons and Hopley 1999; Ham and Pearsons 2001; Temple and Pearsons 2012); competition, predation, and other species interactions (McMichael and Pearsons 1998; McMichael et al. 1999b; Fritts and Pearsons 2004, 2006, 2008; Major et al. 2005; Murdoch et al. 2005; Fritts et al. 2007; Pearsons and Temple 2010; Temple et al. 2017); precocial maturation in males (Beckman et al. 2000; Larsen et al. 2004, 2006, 2010, 2013;

Pearsons et al. 2009; Galbreath et al. 2021); homing (Dittman et al. 2010); straying (Fast et al. 2015); fitness and relative reproductive success (Busack et al. 2007; Beckman et al. 2008; Knudsen et al. 2006, 2008; Schroder et al. 2008, 2010, 2012; Koch et al. 2022; Bosch et al. 2023); and genetic divergence (Waters et al. 2015, 2018, 2020). A science conference is held annually to present study findings to other agencies and interested members of the public. Study results and conference materials are stored on the web. The status of ongoing research relative to the above uncertainties is presented as part of this report.

This report includes sections on the following regional research, monitoring, and evaluation (RME) strategies: fish population status, harvest, hatchery, and predation. Each section addresses all relevant sub-strategies that apply to this project. The report addresses these strategies and sub-strategies as they apply to spring Chinook (*Oncorhynchus tshamytscha*), summer/fall Chinook (*O. tshamytscha*), and coho (*O. kisutch*) RM&E work in the Yakima subbasin. Steelhead (*O. mykiss*) RME work is addressed in related VSP (2010-030-00), on-reservation watersheds (1996-035-01), and Kelt Reconditioning (CRITFC 2008-458-00 and 2007-401-00) projects. WDFW is addressing hatchery uncertainties related to genetic and ecological interactions under project 1995-064-25. YKFP-related habitat activities for the Yakima Subbasin are addressed under projects 1997-051-00 and 1996-035-01 (except for sediment sampling which is addressed here). Hatchery Production Implementation (O&M) is addressed under project 1997-013-25. Data and findings presented in this report should be considered preliminary until results are published in the peer-reviewed literature.

Study Area

The project study area is the Yakima River Basin WRIA 37/38/39 (Figure 1).

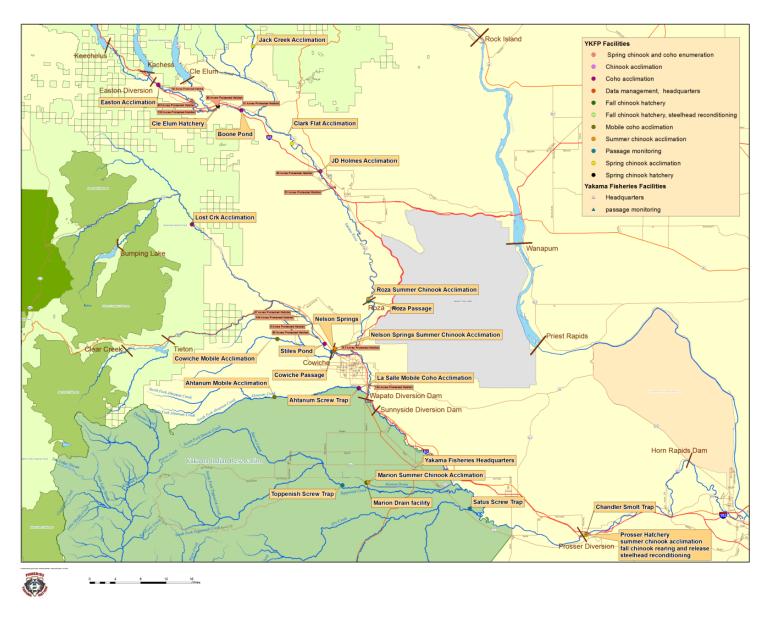


Figure 1. Yakima River Basin and Yakama Nation/YKFP-related artificial production and monitoring facilities (map provided by Paul Huffman).

Fish Population Status Monitoring

Status and Trend of Adult Fish Populations (Abundance)

Methods: Adult salmon populations in the Yakima River Basin are enumerated at Prosser Dam using video equipment installed in all three adult fish ladders (monitoringresources.org methods 143, 144, 307, 515). At both Prosser and Roza Dams, adult fish traps are also used on a seasonal basis for biological sampling and enumeration (monitoringresources.org methods 135). When the Roza adult trap is not in operation, video equipment is also employed at the adult fish ladders there. However, camera placement and actual viewing area are limited; these combined with water clarity issues during certain river conditions all affect video enumeration at Roza Automatic Passive Integrated Transponder (PIT) tag detectors are also employed at all fish ladders at both dams (see sites RZF and PRO in ptagis.org). For the safety and protection of personnel and equipment, video and PIT-detection equipment are removed during periods of high river flow. In these instances, biologists attempt to extrapolate fish counts using data from before and after the high flow event. Although adult passage over spillways is believed to occur when flows are favorable, Prosser Dam counts are generally considered by Yakama Nation biologists to be within +/- 5% of actual fish passage. Roza Dam counts during trap operation (generally the entire spring Chinook counting period, March-September) are considered virtually 100% accurate; however, during the late fall and winter counting period when video equipment is used at least part of the time, accuracy may fall to only 50-75% of actual fish passage based on preliminary evaluation of PIT tag detection data. Fish are denoted as hatchery- or natural-origin based on presence or respectively, of observed external or internal marks or (monitoringresources.org method 342). Chinook are denoted as spring-, summer-, or fall-run based on review of PIT-detection data and visual observations of coloration and body morphometry.

At Prosser Dam, time-lapse video recorders (VHS) and a video camera were used in prior years at viewing windows at each of the three fishways. Digital video recorders (DVR) and surveillance software systems (to replace the VHS systems) were tested at each of the three Prosser fishways in 2007 and became fully operational in February of 2008. The new systems provide the ability to filter digital video for just images of fish moving through the viewing window so that data are more easily downloaded to the viewing stations in Toppenish, allowing technicians in Toppenish to provide more timely and accurate fish counts. The technicians review the images and record various types of data for each fish that migrates upstream via the ladders. For each fish,

technicians record passage date, passage time, facility/ladder, and species in a database. Similarly, adult trap sample data for operations at both Prosser and Roza Dams are entered into databases. These databases are automatically uploaded daily so that integrated (trap and video) count and Yakima Basin adult trap sampling (login required) data for the Prosser and Roza data sets can be viewed at: https://yakamafish-nsn.gov/fish-data. Count data for these facilities are also mirrored on the Columbia River DART (Data Access in Real Time) web site. Counts are regularly reviewed and adjusted for data gaps and knowledge about adult and jack lengths from sampling activities with corrections made to our master data sets during the course of the season and post-season.

Spring Chinook began returning from the Cle Elum Supplementation and Research Facility (CESRF) in 2000 (jacks) and 2001 (adults). All CESRF-origin spring Chinook are marked. Due to physical and logistical constraints at the Prosser Hatchery it is not possible to mark all hatchery releases of summer/fall run Chinook without jeopardizing fish health and survival but these issues are being addressed through the Master Planning process (Yakama Nation 2019). Thus, enumeration of hatchery- and natural-origin summer/fall run Chinook adult returns is not presently available but will be available in the future. New marking protocols made it possible to distinguish hatchery- and natural-origin coho beginning with return year 2001.

Results:

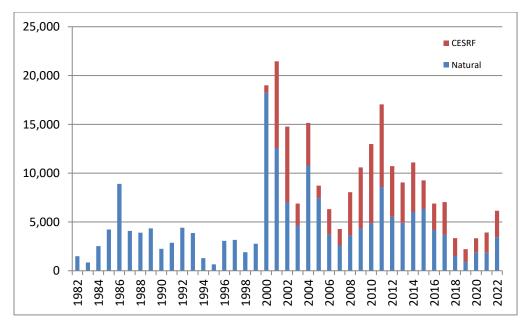


Figure 2. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Prosser Dam, 1982-present.

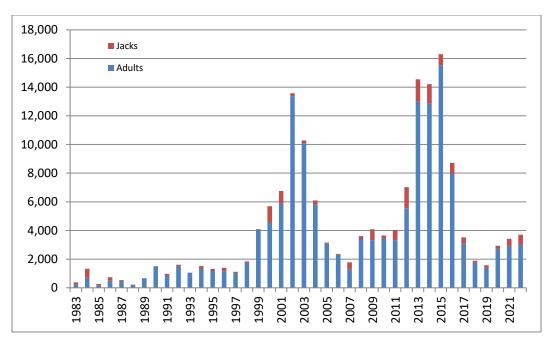


Figure 3. Estimated returns of adult and jack summer- and fall-run Chinook to the Yakima River mouth, 1983-present.

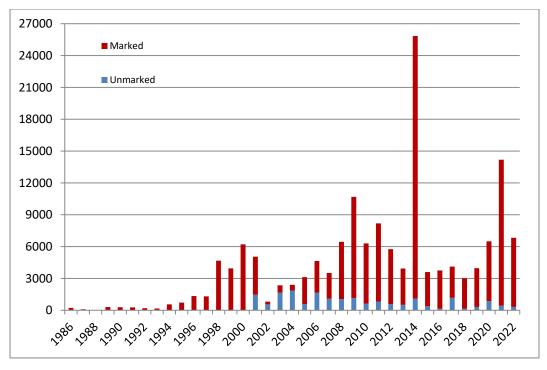


Figure 4. Estimated counts of marked (presumed hatchery-origin) and unmarked (presumed natural-origin) Coho (adults and jacks) at Prosser Dam 1986-present.

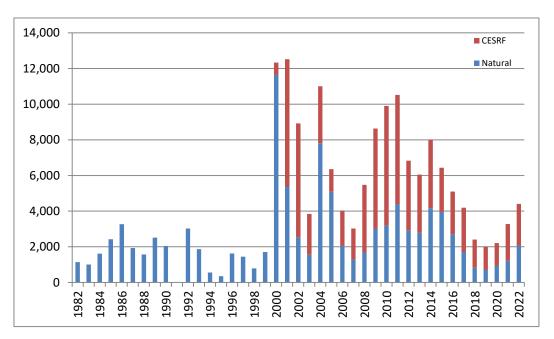


Figure 5. Estimated counts of natural- and Cle Elum Supplementation and Research Facility (CESRF-) origin spring Chinook (adults and jacks) at Roza Dam, 1982-present.

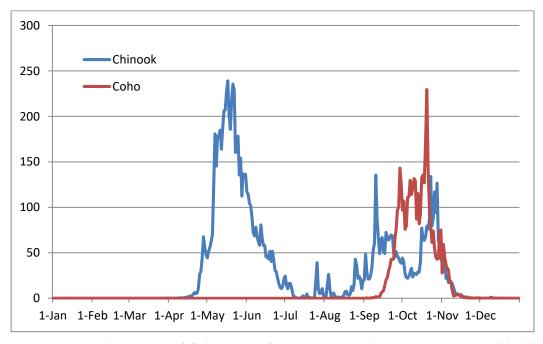


Figure 6. Average daily passage of Chinook and Coho (adults and jacks) at Prosser Dam, 2013-2022.

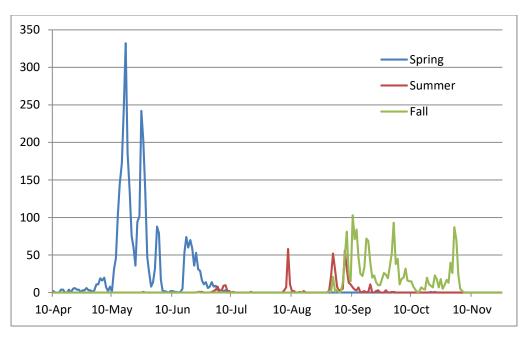


Figure 7. Passage timing of adult and jack Chinook at Prosser Dam in 2022 by run (see Methods).

Discussion:

Annual abundance of spring Chinook at Prosser Dam has increased from a 1982-2000 average of about 4,000 fish to a 2001-2022 average of about 9,100 fish (Figure 2). Annual abundance of spring Chinook at Roza Dam has increased from a 1982-2000 average of about 2,300 fish to a 2001-2022 average of approximately 6,100 fish (Figure 5). These increases beginning in 2001 coincide with the first adult returns from the Cle Elum supplementation program. However, freshwater passage conditions, marine survival, and habitat restoration and enhancement work also affect survival and return rates. The lower adult returns observed in 2003 and 2007 coincide with notable droughts during the corresponding smolt outmigration years of 2001 and 2005. Returns in several recent years (beginning in 2015) were affected by thermal barriers in the lower Yakima River during the adult migration timeframe. Discussion of uncertainties relating to the Cle Elum spring Chinook supplementation program is included under Hatchery Monitoring later in this report. Additional data and detail on the Cle Elum spring Chinook supplementation program and the status of natural- and CESRF-origin spring Chinook in the Yakima River Basin are provided in Appendix B.

Although some natural production is occurring, adult returns of fall Chinook to the Yakima River Basin consist mostly of hatchery-origin fish returning from annual releases of Upriver Brights from the Prosser Hatchery which have occurred since 1983 and averaged about 1.9 million since 1999 (Yakama Nation 2019). In addition, the Yakama Nation has a goal of re-establishing Summer-run Chinook which were

extirpated from the Yakima Basin by 1970. Pursuant to this goal we began releases of Wells Hatchery summer-run Chinook in the Yakima River Basin in 2009. Annual abundance of summer/fall Chinook at the Yakima River mouth has increased from a 1983-1999 average of about 1,200 fish to a 2000-2022 average of about 6,200 fish (Figure 3). While this increase coincides with improved ocean conditions, some of the increase may also be due to improved passage in the mainstem Columbia River, and improvements in spawning and rearing protocols. By re-establishing the summerrun component we seek to increase the temporal (Figures 6 and 7) and spatial distribution of summer/fall run Chinook in the Yakima River Subbasin (Yakama Nation 2019). Approximately 370 summer-run Chinook were estimated to pass above Prosser Dam in 2022 (Figure 7).

Coho were extirpated from the Yakima Subbasin by the early 1980s. Pursuant to *U.S. v. Oregon* court-mandated agreements, substantial numbers (annual average > 700,000) of hatchery-reared coho salmon were released into the Yakima River since the mid-1980s. Prior to 1996 the primary purpose of releases was harvest augmentation and fish were released in sub-optimal spawning and rearing areas below Wapato Dam. With the inception of the YKFP in 1996, the objective of the coho program became "to determine the feasibility of reestablishing a naturally spawning coho population" and releases were moved upriver to more suitable habitats for natural coho. Monitoring of these efforts to re-introduce a sustainable, naturally spawning coho population in the Yakima Basin have indicated that coho returns averaged 6,000 fish from 1998-2022 (an order of magnitude improvement from the average for years prior to the project) including estimated returns of wild/natural coho averaging over 800 fish annually since 2001 (Figure 4).

Status and Trend of Adult Productivity

Methods:

We used recruit-per-spawner relationships (Ricker 1975) to describe adult-to-adult productivity indices. Species-specific methods were as follows.

Spring Chinook

Estimated natural-origin spawners for the Upper Yakima River were calculated as the estimated escapement above Roza Dam plus the estimated number of spawners between the confluence with the Naches River and Roza Dam. Total natural-origin returns to the Upper Yakima River were developed using run reconstruction techniques (Appendix B). Age composition for Upper Yakima returns was estimated from spawning ground carcass scale samples (monitoring resources.org method 112) for the years 1982-1996 and from Roza Dam brood-stock collection samples

(Knudsen et al. 2006; Appendix B) for the years 1997 to present. Since age-3 fish (jacks) are not collected for brood-stock in proportion to the jack run size, the proportion of age-3 fish in the upper Yakima for 1997 to present was estimated using the proportion of jacks (based on visual observation) counted at Roza Dam relative to the total run size.

Estimated spawners and total returns for Naches River Subbasin natural-origin spring Chinook were calculated using run reconstruction techniques (Appendix B). Age composition for Naches Basin age-4 and age-5 returns were estimated from spawning ground carcass scale samples (monitoring resources.org method 112). The proportion of age-3 fish was estimated after reviewing jack count (based on visual observations) data at Prosser and Roza dams.

Estimated spawners at the CESRF were the total number of wild/natural fish collected at Roza Dam and taken to the CESRF for production brood-stock (Knudsen et al. 2006; Appendix B). Total returns of CESRF-origin fish were based on run reconstruction and Roza dam sampling operations. Age composition for CESRF fish was estimated using scales and PIT tag detections from CESRF fish sampled passing upstream through the Roza Dam adult monitoring facility (Knudsen et al. 2006; Appendix B).

Coho

From central British Columbia south, the vast majority of coho salmon adults are 3-year-olds, having spent approximately 18 months in fresh water and 18 months in salt water (Loeffel and Wendler 1968, Wright 1970). Therefore, we estimated a natural-origin productivity (recruits per spawner) index by dividing natural-origin returns to Prosser Dam by the estimated returns to Prosser Dam three years prior. We computed this index for both adult and combined adult and jack returns per adult and combined adult and jack spawner. Note that this method will bias productivity estimates high, as it assumes no natural production from hatchery-origin spawners.

Summer/Fall Run Chinook

Adult fall Chinook returning to the Yakima Basin consist of hatchery-origin returns from releases at and above Prosser Dam and natural-origin returns from fish spawning naturally in the Yakima River. Due to fiscal, physical, logistical, and policy considerations, only a small proportion of hatchery-origin releases have been externally marked. Therefore, it is impossible at present to know the origin of unmarked adult fall Chinook counted at Prosser. Additional marking is proposed for hatchery-origin releases as part of the Master Plan (Yakama Nation 2019), which will allow development of a comprehensive brood/cohort age at return table for natural-and hatchery-origin returns. Methods and results for evaluating adult productivity of

summer/fall run Chinook will be included in future reports and publications as the data become available.

Results:

Table 1. Adult-to-adult productivity indices for upper Yakima wild/natural spring Chinook.

Brood	Estimated	Estima	Returns/			
Year	Spawners	Age-3	Age-4	Age-5	Total	Spawner
1984	1,715	92	1,348	139	1,578	0.92
1985	2,578	114	2,746	105	2,965	1.15
1986	3,960	171	2,574	149	2,893	0.73
1987	2,003	53	1,571	109	1,733	0.87
1988	1,400	53	3,138	132	3,323	2.37
1989	2,466	68	1,779	9	1,856	0.75
1990	2,298	79	566	0	645	0.28
1991	1,713	9	326	22	358	0.21
1992	3,048	87	1,861	95	2,043	0.67
1993	1,925	66	1,606	57	1,729	0.90
1994	573	60	737	92	890	1.55
1995	364	59	1,036	129	1,224	3.36
1996	1,657	1,059	12,882	630	14,571	8.79
1997	1,204	621	5,837	155	6,613	5.49
1998	390	434	2,803	145	3,381	8.68
1999	$1,021^{1}$	164	722	45	930	0.91
2000	11,864	856	7,689	127	8,672	0.73
2001	12,087	775	5,074	222	6,071	0.50
2002	8,073	224	1,875	148	2,247	0.28
2003	3,341	158	1,036	63	1,257	0.38
2004	10,377	207	1,547	75	1,828	0.18
2005	5,713	293	2,630	14	2,936	0.51
2006	3,378	868	2,887	133	3,888	1.15
2007	2,322	456	3,976	65	4,498	1.94
2008	4,343	1,135	3,410	123	4,668	1.07
2009	7,056	283	2,572	109	2,964	0.42
2010	8,383	923	3,854	59	4,836	0.58
2011	8,584	832	3,908	144	4,883	0.57
2012	5,483	197	2,445	20	2,662	0.49
2013	4,984	299	1,622	36	1,957	0.39
2014	6,751	241	814	12	1,067	0.16
2015	5,466	66	620	14	701	0.13
2016	4,281	99	905	52	1,056	0.25
2017	3,342	75	994	14^{2}	$1,082^2$	0.32^{2}
2018	1,817	201	$2,012^2$			
2019	1,508	136^{2}				
2020	1,664					
2021	2,763					
2022	$3,574^2$					
Mean	3,986	320	2,612	101	3,035	1.40

^{1.} The geometric mean jack (age-3) proportion of spawning escapement from 1999-2021 was mean 0.17. 2. Preliminary.

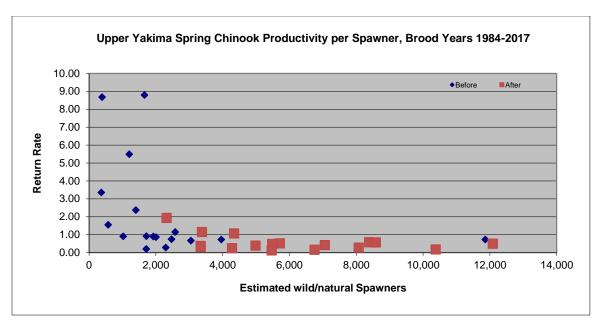


Figure 8. Upper Yakima wild/natural spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2017) commencement of supplementation.

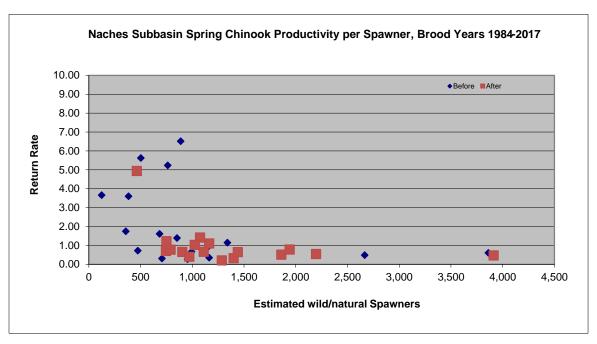


Figure 9. Naches subbasin spring Chinook return rate per spawner, before (brood years 1984-2000) and after (brood years 2001-2017) commencement of supplementation in the Upper Yakima River.

Table 2. Adult-to-adult productivity indices for Naches River Subbasin wild/natural spring Chinook.

Brood	Estimated	Estimated Yakima R. Mouth Returns Ret						
Year	Spawners	Age-3	Age-4	Age-5	Age-6	Total	Spawner	
1984	383	110	706	564	0	1,381	3.60	
1985	683	132	574	396	0	1,102	1.61	
1986	2,666	68	712	499	15	1,294	0.49	
1987	1,162	27	183	197	0	407	0.35	
1988	1,340	32	682	828	0	1,542	1.15	
1989	992	28	331	306	0	665	0.67	
1990	954	24	170	74	0	269	0.28	
1991	706	7	37	121	57	222	0.31	
1992	852	29	877	285	0	1,191	1.40	
1993	1,145	45	593	372	0	1,010	0.88	
1994	474	14	164	164	0	343	0.72	
1995	124	40	164	251	0	455	3.66	
1996	887	179	3,983	1,620	0	5,782	6.52	
1997	762	207	3,081	708	0	3,996	5.24	
1998	503	245	1,460	1,128	0	2,833	5.63	
1999	358 ¹	113	322	190	0	626	1.75	
2000	3,862	71	2,060	215	0	2,346	0.61	
2001	3,912	126	1,254	471	0	1,850	0.47	
2002	1,861	59	753	153	0	965	0.52	
2003	1,400	52	237	175	0	464	0.33	
2004	2,197	107	875	218	0	1,199	0.55	
2005	1,439	167	653	116	0	936	0.65	
2006	1,163	192	838	254	0	1,283	1.10	
2007	463	125	1,649	514	0	2,288	4.94	
2008	1,074	414	827	290	0	1,531	1.42	
2009	903	84	448	65	0	597	0.66	
2010	1,024	209	653	198	0	1,059	1.03	
2011	1,942	137	1,088	305	0	1,530	0.79	
2012	1,110	64	419	260	0	743	0.67	
2013	750	110	660	148	0	919	1.23	
2014	746	142	376	13	0	532	0.71	
2015	1,285	26	34	206	0	266	0.21	
2016	790	6	523	89	0	617	0.78	
2017	971	32	225	139^{2}		396^{2}	0.41^{2}	
2018	500	37	353^{2}					
2019	51	27^{2}						
2020	740							
2021	415							
2022	872^{2}							
Mean	1,114	97	799	339	3	1,254	1.51	

^{1.} The geometric mean jack (age-3) proportion of spawning escapement from 1999-2021 was 0.09. 2. Preliminary.

Table 3. Adult-to-adult productivity indices for Cle Elum SRF spring Chinook.

Brood	Estimated	Estimate	Estimated Yakima R. Mouth Returns					
Year	Spawners	Age-3	Age-4	Age-5	Total	Spawner		
1997	261	741	7,753	176	8,670	33.22		
1998	408	1,242	7,939	602	9,782	23.98		
1999	738^{1}	134	714	16	864	1.17		
2000	567	1,103	3,647	70	4,819	8.50		
2001	595	396	845	9	1,251	2.10		
2002	629	345	1,886	69	2,300	3.66		
2003	441	121	800	12	932	2.11		
2004	597	805	3,101	116	4,022	6.74		
2005	510	1,305	3,052	21	4,378	8.58		
2006	419	3,038	5,812	264	9,114	21.75		
2007	449	1,277	5,174	108	6,558	14.61		
2008	457	2,344	4,567	65	6,976	15.27		
2009	486	461	2,663	58	3,181	6.55		
2010	336	1,495	3,183	30	4,707	14.01		
2011	377	1,233	2,340	34	3,607	9.57		
2012	374	221	1,492	10	1,723	4.61		
2013	398	802	1,993	0	2,795	7.02		
2014	384	1,008	1,447	7	2,463	6.41		
2015	442	314	877	0	1,191	2.70		
2016	376	287	771	41	1,099	2.92		
2017	382	349	1,188	0^{2}	$1,537^2$	4.02^{2}		
2018	294	546	$1,701^2$		$2,248^2$	7.65^{2}		
2019	306	450^{2}						
2020	405							
2021	412							
2022	377^{2}							
Mean	439	870	2,861	81	3,828	6.72^3		

^{1. 357} or 48% of these fish were jacks.
2. Preliminary.
3. Geometric mean.

Table 4. Estimates of adult-to-adult productivity indices for Yakima Basin natural-origin coho.

	Prosser Da	m Counts	Return per Spaw	ner Indices
Return			With	Without
Year	Adults	Jacks	Jacks	Jacks
2001	1,432	21		_
2002	309	245		
2003	1,523	135		
2004	1,820	25	1.27	1.27
2005	472	120	1.07	1.53
2006	1,562	114	1.01	1.03
2007	1,049	32	0.59	0.58
2008	459	587	1.77	0.97
2009	982	173	0.69	0.63
2010	573	37	0.56	0.55
2011	802	24	0.79	1.75
2012	550	33	0.50	0.56
2013	424	79	0.83	0.74
2014	1,082	18	1.33	1.35
2015	362	9	0.64	0.66
2016	103	45	0.29	0.24
2017	1,162	15	1.07	1.07
2018	125	32	0.42	0.35
2019	301	8	2.09	2.92
2020	744	107	0.72	0.64
2021	422	8	2.74	3.38
2022	290	17	0.99	0.96
Mean	752	86	1.02	1.11

4.00
3.50
3.00
4.00
2.50
1.50
0.50
0.00
0 500
1,000
1,500
2,000
Natural Adult Spawners

Figure 10. Productivity indices for age-3 natural-origin coho, brood years 2001-2019.

Discussion:

Recruit per spawner data for the Upper Yakima and Naches spring Chinook populations are highly correlated (Tables 1 and 2; Pearson's correlation coefficient=0.87) and analysis of variance indicates the means (± one standard error) 33-year data set are not different (Upper Yakima=1.43±0.38; Naches=1.54±0.30; P=0.82). Trends in adult productivity indices for Yakima Basin natural-origin spring Chinook are also very similar for both Upper Yakima (Figure 8) and Naches (Figure 9) populations. Under present conditions, productivity for spring Chinook appears to peak at about 1,000 to 1,500 spawners and declines as spawner abundance approaches 2,000 fish or greater (Figures 8-9). The trend in adult productivity indices for natural-origin coho (Figure 10) is not as obvious, and 2014 marked the first year that we observed high coho spawner escapements (when hatchery-origin spawning escapement is included) similar to those we have observed with spring Chinook in some recent years. These data indicate that density-dependent limiting factors (see YSFWPB 2004) depress natural productivity at fairly low population abundance in the Yakima River Basin, as is the case for most salmon populations throughout the Columbia River Basin (ISAB 2015). Until these factors are fully addressed, supplementation yields higher overall productivity rates and can be used to return adults to fisheries and to augment natural spawning populations (Table 3). While higher spawner abundances under present conditions do not yield increased adult production, these fish still contribute to more fully seeding available habitats, increased spatial and temporal diversity, and nutrient enhancement that should eventually lead to increased natural food supply and higher productivity in the future (NRC 1996, see especially pp. 368-369; Kiffney et al. 2014).

Status and Trend of Juvenile Abundance

Methods: The Yakama Nation releases a number of hatchery-origin smolts annually pursuant to *U.S. v Oregon* Management Agreements. Adult returns from these releases serve to mitigate for lost harvest opportunity (due to alteration of the Columbia River ecosystem and associated losses in natural production and productivity), to augment the number of fish spawning naturally (supplementation), or a combination of the two. Juveniles are released from many locations, as yearlings or subyearlings, depending on the goals of the specific programs. As these juveniles migrate downstream, they are mixed with naturally produced juveniles.

Above Prosser Dam, a portion of the river flow is diverted into the Chandler canal to generate electrical power and serve irrigation districts downstream. Juvenile fish are diverted into the Canal (and subsequently the Chandler juvenile monitoring facility-CJMF, Figure 1) at different rates depending on river and canal flow. Smolt sampling

efforts at the CJMF near Prosser Dam were conducted annually from early winter through early summer corresponding with salmon smolt out-migrations. A portion of entrained salmon outmigrants (regulated by a timed gate) was manually counted and sampled for biological data on a daily basis and all PIT tagged fish were interrogated. Sampling methods were described in Busack et al. (1997) and in Appendix C; see also monitoring resources.org methods 32 and 3875.

Paired releases of PIT-tagged smolts were made in order to estimate the fish entrainment and canal survival rates in relation to river conditions and canal operations. For outmigration years 1999 through 2014, these data were used to generate a multi-variate river flow/canal entrainment relationship (D. Neeley 2010 and 2012a; Appendix C). Over a range of flow diversion rates, juvenile fish entrainment rates generally fit a logistic curve: at low diversion rates, the entrainment rate is lower than the diversion rate, and at high diversion rates the entrainment rate is higher than the diversion rate. In recent years it became difficult to adapt the model to higher winter and spring flows and to river channel changes, partly because at low diversion rates it was difficult to capture enough fish to get many point estimates of entrainment rate. The releases that were made, however, still tended to support a low entrainment rate relative to diversion rate at high river flows. For some years, Prosser smolt passage estimates produced by this model were outside of what were considered reasonable bounds (e.g., entrainment-based Prosser passage estimates approached or even exceeded known releases for hatchery-origin spring Chinook far This required us to reevaluate and change our methodology. proportions of all PIT- tagged smolts released above Prosser and detected at mid-Columbia dams that were previously detected in the Chandler Canal bypass now serve as estimates of bypass-detection efficiency. Expanded Prosser passage estimates were then derived using the juvenile sample counts and detection efficiencies as described Appendix C. These methods were generally consistent monitoringresources.org methods 134, 271, 1636 and 6786.

Results and Discussion:

At the CESRF, the number of release groups and total number of spring Chinook released diverged from the facility goal of 810,000 smolts in some years. In brood year 1997, the Jack Creek acclimation facility was not yet complete and project policy and technical teams purposely decided to under-collect brood stock to allow a methodical testing of the new facility's operations with less risk to live fish, which resulted in the stocking of only 10 of the 18 raceways. In brood year 1998, the project did not meet facility release goals due to a biological specification that no more than 50% of returning wild fish be taken for brood stock. As a result, only 16 raceways were stocked with progeny of the 1998 brood. In the same year, raceway 4 at the Jack

Creek acclimation site suffered mechanical failures causing loss of flow and reduced oxygen levels and resulted in the loss of approximately one-half the fish in this raceway prior to release. In the drought year of 2001, a large number of returning adults presented with high enzyme-linked immunosorbent assay (ELISA) levels of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). The progeny of these females were purposely destroyed. As a result, only nine raceways were stocked with fish. The project decided to use the fish from an odd raceway for a predator avoidance training sub-experiment (these fish were subsequently acclimated and released from the Easton acclimation site).

Table 5. CESRF total releases of Spring Chinook by brood year, treatment, and acclimation site.

Brood	Acclimation Site ³							
Year	Control ¹	Treatment ²	CFJ	ESJ	JCJ	Total		
1997	207,437	178,611	229,290	156,758		386,048		
1998^{4}	284,673	305,010	221,460	230,860	137,363	589,683		
1999	384,563	374,226	232,563	269,502	256,724	758,789		
2000	424,554	409,731	285,954	263,061	285,270	834,285		
2001^{5}	183,963	186,273	80,782	39,106	250,348	370,236		
2002	420,764	416,140	266,563	290,552	279,789	836,904		
2003	414,175	410,517	273,377	267,711	283,604	824,692		
2004^{6}	378,740	406,708	280,598	273,440	231,410	785,448		
2005	431,536	428,466	287,127	281,150	291,725	860,002		
2006	351,063	291,732	209,575	217,932	215,288	642,795		
2007	387,055	384,210	265,907	254,540	250,818	771,265		
2008	421,290	428,015	280,253	287,857	281,195	849,305		
2009	418,314	414,627	279,123	281,395	272,423	832,941		
2010	395,455	399,326	264,420	264,362	265,999	794,781		
2011	382,195	386,987	255,290	248,454	265,438	769,182		
2012	401,059	401,657	256,732	276,210	269,774	802,716		
2013	No Ex	periment	215,933	214,745	216,077	646,755		
2014	337,548	347,682	232,440	226,257	226,533	685,230		
2015	331,316	323,631	208,239	218,225	228,483	654,947		
2016	339,816	329,392	230,490	218,676	220,042	669,208		
2017	351,656	359,013	244,236	233,449	232,984	710,669		
2018	322,219	320,201	213,833	206,619	221,968	642,420		
2019	270,242	280,156	153,575	193,042	203,781	550,398		
2020	376,302	384,886	261,643	244,378	255,167	761,188		
2021		809,010	268,064	276,969	263,977	809,010		
Mean	357,215	355,096	239,899	237,410	246,091	713,556		

- 1. Brood years 1997-2001: Optimum Conventional Treatment (OCT). Brood Years 2002-2004: Normal (High) growth. Brood Years 2005-2012: Normal feed at Cle Elum or accl. sites.
- 2. Brood years 1997-2001: Semi-natural Treatment (SNT). Brood Years 2002-2004: Slowed (Low) growth. Brood Year 2005, 2007-2012: saltwater transition feed at accl. Sites; 2014: BioPro vs BioVIT. Brood Year 2006: EWS diet at CESRF through May 3, 2007.
- 3. CFJ=Clark Flat; ESJ=Easton; JCJ=Jack Creek.
- 4. At the Jack Creek acclimation site only 4 of 6 raceways were stocked, and raceway 4 suffered mechanical failures resulting in the loss of about 20,000 OCT (control) fish.
- 5. High BKD incidence in adult broodstock reduced production to just 9 ponds (Clark Flat 1-2, Jack Creek, and Easton). Easton ponds were used for predator avoidance trained (PAT) fish and a single Cle Elum pond was spread between 6 ponds at Easton with crowders used to simulate pond densities for fish at other acclimation sites. These releases were excluded from mean pond density calculations by treatment.

6. JCJ raceway 3 suffered mechanical failures resulting in the loss of about 45,000 high-growth (control) fish.

Table 6. Total releases of Coho by brood year, life stage, and brood source.

Brood	Smolts		Pai	Parr		Local Brood		molts	
Year	UppYak	Naches	Prosser	UppYak	Naches	Smolts	Parr	Non-Local	Local
1997	436,000	1,257,000							1,693,000
1998	502,155	502,239							1,004,394
1999	498,872	429,318							928,190
2000	187,659	379,904							567,563
2001	263,288	357,530							620,818
2002	403,000	407,002							810,002
2003	313,207	291,494							604,701
2004	322,417	332,455							654,872
2005	338,127	554,784	50,000						942,911
2006	426,632	516,753	81,114						1,024,499
2007	358,412	440,783	219,098						1,018,293
2008	304,638	269,936	182,719	12,000	25,000	324,598	37,000	432,695	757,293
2009	407,184	341,414	245,455	13,000	12,000	610,423	25,000	383,630	994,053
2010	443,030	131,972	190,836	15,000	15,000	522,027	30,000	243,811	765,838
2011	311,102	359,067	322,100	365,035	73,572	992,269	438,607		992,269
2012	339,034	305,197	221,567	10,555	29,565	446,295	40,120	419,503	865,798
2013	353,139	373,072	367,382	9,000	18,232	524,967	27,232	568,626	1,093,593
2014	408,112	298,619	267,830	93,525	92,023	974,561	185,548		974,561
2015	141,000	141,000	204,358			204,358		282,000	486,358
2016	407,196	369,521	205,967			205,967		776,717	982,684
2017	438,331	267,211	470,000	114,141	138,624	641,589	252,765	533,953	1,175,542
2018			929,388	139,925	114,735	400,000	254,660	528,388	929,388
2019			897,233	3,000	3,000	354,000	6,000	543,233	897,233
2020	210,000		915,197	215,000	0	400,000	215,000	610,000	1,125,197
2021	197,589		400,000	125,571	200,000	597,589	325,571	537,916	597,589
Mean	348,266	396,489	246,810	75,064	43,358	514,189	121,757	418,677	900,266

Table 7. Total releases of fall-run Chinook by release year and release site.

Release	Prosser On-Station Release			se	Billy's	Stiles	Marion	Total
Year	\mathbf{LWH}^1	\mathbf{PRH}^1	Subyrl ²	\mathbf{Yrlng}^2	\mathbf{Pond}^2	\mathbf{Pond}^2	Drain	Release
1997	1,694,861		-					1,694,861
1998	1,695,399							1,695,399
1999	1,690,000		192,000					1,882,000
2000	1,695,037		306,000				16,000	2,017,037
2001	1,699,136		427,753				12,000	2,138,889
2002	1,704,348		286,158				4,000	1,994,506
2003	1,771,129		365,409				18,000	2,154,538
2004	1,748,200		561,385				52,223	2,361,808
2005	1,700,000		466,000		$75,000^3$	38,890	41,000	2,320,890
2006	1,683,664		130,002			118,835	2,000	1,934,501
2007	$1,700,000^4$		50,000		5,000	75,000	15,731	1,845,731
2008	789,993		519,486 ⁵	1,833	11,308	72,296	5,253	1,400,169
2009	1,647,275		299,574	7,516			24,245	1,978,610
2010	1,680,045		290,282	12,167			22,945	2,005,439
2011	1,699,944	503,772	620,952	22,857				2,847,525
2012	1,200,000	405,000	269,633	19,432			72,258	1,966,323
2013	1,506,725		184,949	22,735				1,714,409
2014	1,542,702	379,970	445,347					2,368,019
2015	1,653,495	479,078	584,397					2,716,970
2016	1,593,090		562,472					2,155,562
2017	1,789,399		434,096	159,468				2,382,963
2018	1,638,298		338,727	208,664				2,185,689
2019	0		158,046	224,961				682,652
2020	2,315,627	82,679	0					2,398,306
2021	1,601,273		536,000	210,000				2,397,273
2022	1,099,834	565,767	384,000	115,490				2,165,091

- 1. Transfers from LWH=Little White Salmon NFH; PRH=Priest Rapids Hatchery.
- 2. Releases from local brood source adults collected at Prosser Dam or Hatchery.
- 3. Released from Edler Pond (approximately 2 miles downstream from Billy's Pond).
- 4. Of which approximately 500,000 were reared on-station at Prosser under accelerated growth conditions.
- 5. Of which approximately 5,400 were released from SKOV pond.

Table 8. Total releases1 of summer-run Chinook by release year and release site.

Release		Stiles/Prosser ²		Nelson			Total
Year	Prosser	Subyrl	Yrlng	Springs	Wapatox	Roza	Release
2009		180,911					180,911
2010		200,747					200,747
2011			176,364	39,406			215,770
2012	98,300			98,803			197,103
2013				88,208		48,355	136,563
2014				179,901		74,980	254,881
2015	55,000			99,600		122,848	277,448
2016						37,000	37,000
2017	169,499					75,000	244,499
2018				44,000		30,000	74,000
2019	581,000			75,000	100,000	75,000	831,000
2020	$932,843^3$			100,000	100,000	175,000	1,307,843
2021	198,398				30,830	50,366	279,594
2022	434,712		19,081	74,616	68,469	111,661	708,539

- 1. All fish released as subyearlings unless otherwise noted.
- 2. 2009-2010: Stiles Pond/Naches R.; 2022: Prosser.
- 3. Includes Marion Drain facility acclimation

For smolt migration years 2000 to present, annual abundance estimates of juvenile smolts migrating downstream at Prosser Dam averaged 201,767 wild/natural spring Chinook, 323,920 CESRF-origin spring Chinook, 41,600 wild/natural-origin coho, and 269,900 hatchery-origin coho (Table 9). These are the years for which our data and methods are considered most reliable. Juvenile passage estimates for earlier years are provided below under "Status and Trend of Juvenile Productivity"; however, the reader should be aware that we have less confidence in these data because we have refined data collection protocols and passage estimation methods over time. As the majority of fall Chinook smolt migrants are unmarked hatchery-origin fish, we provide only the gross abundance indices below under "Status and Trend of Juvenile Productivity". The reader is cautioned to pay particular attention to the factors complicating estimates of juvenile abundance and productivity described under "Status and Trend of Juvenile Productivity".

Table 9. Estimated smolt passage at Prosser Dam for Yakima Basin wild/natural and hatchery-origin spring Chinook and coho.

	Smolt	Spring C	hinook	Col	Coho		
Brood	Migr.	Wild/	Hatchery	Wild/			
Year	Year	Natural	(CESRF)	Natural	Hatchery		
1997	1999	584,016	187,669				
1998	2000	199,416	303,688	37,359	331,503		
1999	2001	148,460	281,256	40,605	134,574		
2000	2002	467,359	366,950	19,859	155,814		
2001	2003	308,959	154,329	9,092	139,135		
2002	2004	169,397	290,950	18,787	148,810		
2003	2005	134,859	236,443	31,631	204,728		
2004	2006	133,238	300,508	8,298	204,602		
2005	2007	99,341	351,359	18,772	260,455		
2006	2008	120,013	265,485	40,170	416,708		
2007	2009	237,228	415,923	23,858	496,594		
2008	2010	220,950	382,878	33,408	341,145		
2009	2011	304,322	442,564	22,908	333,891		
2010	2012	258,106	391,446	17,667	244,503		
2011	2013	365,386	372,079	56,947	483,122		
2012	2014	263,266	408,222	159,642	337,988		
2013	2015	125,150	332,715	20,757	129,084		
2014	2016	185,442	403,938	227,163	233,371		
2015	2017	208,929	273,248	12,031	108,570		
2016	2018	131,489	290,644	38,451	299,535		
2017	2019	175,427	319,579	41,696	246,178		
2018	2020	151,265	371,069	10,000	396,000		
2019	2021	106,092	212,000	20,092	323,493		
2020	2022	126,537	282,878		237,548		
	Mean	201,767	323,920	41,616	269,885		

Status and Trend of Juvenile Migration Survival to McNary Dam

Methods: For all species, releases of PIT tagged smolts provided a means to estimate smolt survival to McNary Dam. For most releases, PIT-tag detectors were located in or near the exit(s) from the release sites and allowed estimation of the number of PITtagged fish leaving the release sites (monitoring resources.org 6572). To estimate the survival of smolts detected leaving the release sites that eventually pass McNary Dam, the proportion of PIT-tagged smolts detected leaving the release sites that were later detected at McNary Dam was divided by McNary Dam's detection efficiency. The estimated detection efficiency was the number of smolts detected passing dams downstream of McNary that were previously detected passing McNary divided by the total number of smolts passing the downstream dams, whether or not the smolts were previously detected at McNary. Our methods are described in detail in Appendix C and are generally consistent with Sandford and Smith (2002) and the Columbia Basin Comparative Survival Studies (McCann et al. 2022). We used weighted logistic or weighted least squares analysis of variance to analyze differences in survival metrics and indices between various release sites, years and treatments. Additional detail, results and discussion are provided in Appendices D (spring Chinook), E (coho), and F (summer-run Chinook). There were no PIT-tagged releases of fall-run Chinook in 2020; the latest results for this species were presented in Appendix G of Fiander et al. (2019).

Results and Discussion:

For spring Chinook, we compared survivals to McNary Dam of CESRF hatchery-and natural-origin PIT-tagged smolts released into the Roza Dam bypass and migrating downstream of Roza Dam contemporaneously on or after March 16. This date was selected because CESRF fish were not allowed to begin volitional emigration from the acclimation sites until March 15. Approximately 81% of natural-origin spring Chinook smolts PIT-tagged and released at Roza since 1999 migrated downstream of Roza Dam prior to March 16 (derived using queries of PTAGIS database 7/12/2013). Natural and hatchery-origin smolts contemporaneously migrating past Roza from March 16 on are referred to as "late" migrants. Survival from Roza Dam to McNary Dam was generally better for late-migrating natural-origin relative to hatchery-origin spring Chinook smolts and for late-migrating relative to early-migrating natural-origin smolts (Figure 11; Appendix D). However, these general patterns are reversed in several of the most recent years (Appendix D, Figure 4). This may be due to hatchery-origin fish trending toward larger size at release over time (Bosch et. al. 2023), or the

survival estimation methodology changing from a weighted-average method to use of a Cormack-Jolly-Seber (CJS) method or some of both (Appendix D).

For coho, we estimated survival from acclimation site release to McNary Dam based on life stage, brood source, location, and timing of the releases (Appendix E). The average survival probability of Coho Salmon smolts from the release sites to McNary Dam in 2022 was 14.17 ± 3.55 %, which was lower than the 2021 (40.34 ± 6.02 %) and 2020 estimates (47.31 ± 5.79 %), but similar to the 2019 estimate (14.27 ± 2.64 %) and higher than the 2015 estimate (10.12 ± 1.14 %). The annual variation in survival rate might be associated with annual variation in river flow, water temperature as well as differing release locations. Comparing broodstocks, the survival probability in 2022 was higher for the Eagle Creek stock (25.37 ± 11.68 %) than the Yakima stock (19.28 ± 7.13 %), but both were significantly lower and in reverse order compared to 2021 (Eagle Creek: 35.27 ± 8.21 %; Yakima: 39.10 ± 8.80 %).

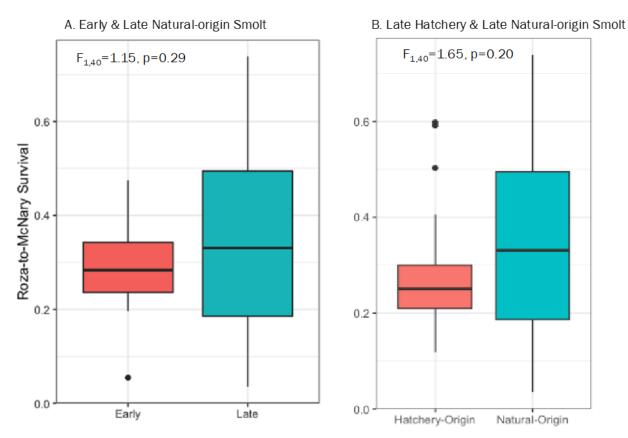


Figure 11. Box plot showing the 24-year average survival probabilities of natural-origin (Natural) and hatchery-origin (Hatchery) spring Chinook Salmon smolts (S. Pandit, Appendix D). A. is the comparison between Early- and Late-migrating natural-origin smolts; and B. is the comparison of Late hatchery- and natural-origin smolts.

Juvenile survival rates to Prosser and McNary Dams for summer-run Chinook varied by year over migration years from 2010 through 2022 (Figure 12). The highest average annual survival rate to McNary Dam was in 2011 (40.15%±1.94%) and the lowest was in 2015 (0.73%±0.47%). The same trend was observed at Prosser Dam (73.64±7.47 in 2011 and 1.95±0 in 2015). These years represent the flow extremes over the study period. Evaluation indicated that release month and fish sizes are also important factors in fish survival. A complete report of our study of juvenile outmigration survival of Yakima Basin Summer Chinook to Prosser and McNary dams is provided in Appendix F.

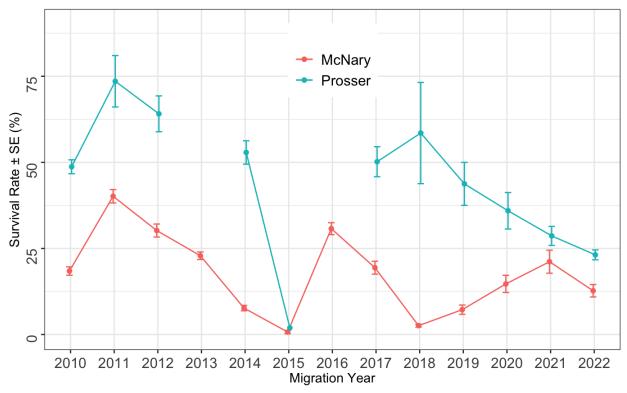


Figure 12. Average annual survival rate (release site to Prosser and McNary Dams) of juvenile Summer Chinook smolts migrating from 2010 through 2022 (S. Pandit, Appendix F).

The data indicate that there are substantial sources of juvenile mortality limiting survival of smolts migrating from release sites in the Yakima River basin. The YKFP is working with partners in multiple forums to implement habitat restoration and water resource management projects that address factors limiting survival and productivity (see Yakima Subbasin, Recovery, and Integrated plans).

Status and Trend of Juvenile Productivity (smolt-to-adult returns)

Methods:

Smolt abundance passage estimates at Prosser and the methods used to derive them were described above. For spring Chinook, adult return estimates to the Yakima River mouth were derived using Prosser and Roza adult abundance and harvest data (described in other sections of this report and in Appendix B) and run reconstruction techniques (Appendix B). For coho, we used Prosser adult abundance.

Adult fall Chinook returning to the Yakima Basin consist of hatchery-origin returns from releases at and above Prosser Dam and natural-origin returns from fish spawning naturally in the Yakima River. Due to fiscal, physical, logistical, and policy considerations, only a small proportion of hatchery-origin releases have been externally marked. Therefore, it is impossible at present to know the origin of unmarked adult fall Chinook counted at Prosser. Additional marking is proposed for hatchery-origin releases as part of the Master Plan (Yakama Nation 2019). To derive rough smolt-to-adult return indices for fall Chinook, aggregate (marked and unmarked combined) smolt passage estimates for the age-3, -4, and -5 components for a given return year were averaged and the aggregate adult passage estimate for that return year was divided by this average smolt passage estimate. For example, the "Prosser Average Smolts" for adult return year 1988 is the average of marked and unmarked Prosser smolt estimates for juvenile migration years 1983-1985.

We also queried the PTAGIS database for PIT-tagged summer- and fall-run Chinook and Coho that were released in the Yakima Subbasin in recent years and produced McNary Dam juvenile (smolt) to Bonneville Dam adult SAR indices using juvenile detections at or downstream of McNary and adult detections at or upstream of Bonneville Dams.

Results:

Table 10. Estimated smolt passage at Chandler and smolt-to-adult return indices (Chandler smolt to Yakima

R. mouth adult) for Yakima Basin wild/natural and CESRF-origin spring Chinook.

R. mou	th adult) for Yaki			l and CESR	RF-origin spr				
			Estimate			Yakima F			t-to-Adult	
		Mean	Passage at	Chandler	<u>-</u>	Adult R	eturns ⁴	Return	Index ⁴	
		$Flow^1$			CESRF					
	Smolt	at			smolt-					
Brood	Migr.	Prosser	Wild/	CESRF	to-smolt	Wild/	CESRF	Wild/	CESRF	
Year	Year	Dam	Natural ²	Total	survival ³	Natural ²	Total	Natural ²	Total	
1986	1988	2454	271,316			4,518		1.7%		
1987	1989	4265	76,362			2,402		3.1%		
1988	1990	4141	140,218			5,746		4.1%		
1989	1991	n/a	109,002			2,597		2.4%		
1990	1992	1960	128,457			1,178		0.9%		
1991	1993	3397	92,912			544		0.6%		
1992	1994	1926	167,477			3,790		2.3%		
1993	1995	4882	172,375			3,202		1.9%		
1994	1996	6231	218,578			1,238		0.6%		
1995	1997	12608	52,028			1,995		3.8%		
1996	1998	5466	491,584			21,151		4.3%		
1997	1999	5925	584,016	187,669	48.6%	12,855	8,670	2.2%	4.6%	
1998	2000^{5}	4946	199,416	303,688	51.5%	8,240	9,782	4.1%	3.2%	
1999	2001	1321	148,460	281,256	37.1%	1,764	864	1.2%	0.3%	
2000	2002	5015	467,359	366,950	44.0%	11,434	4,819	2.4%	1.3%	
2001	2003	3504	308,959	154,329	41.7%	8,597	1,251	2.8%	0.8%	
2002	2004	2439	169,397	290,950	34.8%	3,743	2,557	2.2%	0.9%	
2003	2005	1285	134,859	236,443	28.7%	2,746	1,020	2.0%	0.4%	
2004	2006	5652	133,238	300,508	38.3%	2,802	4,482	2.1%	1.5%	
2005	2007	4551	99,341	351,359	40.9%	4,295	5,004	4.3%	1.4%	
2006	2008	4298	120,013	265,485	41.3%	6,004	10,577	5.0%	4.0%	
2007	2009	5784	237,228	415,923	53.9%	7,952	7,604	3.4%	1.8%	
2008	2010	3592	220,950	382,878	45.1%	7,385	8,036	3.3%	2.1%	
2009	2011	9414	304,322	442,564	53.1%	3,766	3,606	1.2%	0.8%	
2010	2012	8556	258,106	391,446	49.3%	6,602	5,592	2.6%	1.4%	
2011	2013	4875	365,386	372,079	48.4%	7,343	4,160	2.0%	1.1%	
2012	2014	4923	263,266	408,222	50.9%	3,969	1,932	1.5%	0.5%	
2013	2015	1555	125,150	332,715	51.4%	3,415	3,139	2.7%	0.9%	
2014	2016	5765	185,442	403,938	58.9%	1,800	2,865	1.0%	0.7%	
2015	2017	7804	208,929	273,248	41.7%	1,185	1,321	0.6%	0.5%	
2016	2018	5652	131,489	290,644	43.4%	1,931	1,263	1.5%	0.4%	
2017	2019	3595	175,427	319,579	45.0%	1,919	1,700	1.1%	0.5%	
2018	2020^{6}	2864	151,265	371,069	57.8%	$3,087^6$	$2,910^6$	$2.0\%^{6}$	$0.8\%^{6}$	
2019	2021^{6}	3815	106,092	212,000	38.5%					
2020	2022^{6}	6738	126,537	282,878	37.2%					

Mean flow (cfs) approaching Prosser Dam March 29-July 4 of juvenile migration year. In high flow years (flows at or > 5000 cfs) operation of the Chandler smolt sampling facility may be precluded during portions of the outmigration. Data courtesy of **U.S. BOR** hydromet.

^{2.} Aggregate of Upper Yakima, Naches, and American wild/natural populations.

^{3.} Estimated smolt-to-smolt (release from upper Yakima River acclimation sites to Chandler) survival for CESRF juveniles.

^{4.} Includes combined age-3 through age-5 returns. CESRF adult returns and smolt-to-adult survival values are understated relative to wild/natural values since these figures are not adjusted for differential harvest rates in mark selective fisheries in marine and lower Columbia River fisheries.

^{5.} Available data were not sufficient to estimate juvenile flow-entrainment and passage of wild/natural fish.

^{6.} Data for most recent year are preliminary; return data do not include age-5 adult fish.

Table 11. Average combined hatchery- and natural-origin smolt counts at Prosser for fish returning at age-3, -4, and -5, combined adult returns to Prosser Dam of all age classes, and estimated Prosser smolt-to-adult return indices for Yakima River fall-run Chinook for adult return years 1988-2022.

			Prosser
Adult	Prosser	Prosser	Smolt-to-Adult
Return	Average	Total	Return
Year	Smolts ¹	Adults	Index (SAR)
1988	1,029,429	224	0.02%
1989	1,469,019	670	0.05%
1990	1,664,378	1,504	0.09%
1991	1,579,989	971	0.06%
1992	1,811,088	1,612	0.09%
1993	2,034,865	1,065	0.05%
1994	1,976,301	1,520	0.08%
1995	1,329,664	1,322	0.10%
1996	1,023,053	1,392	0.14%
1997	1,097,032	1,120	0.10%
1998	1,533,093	1,148	0.07%
1999	1,786,511	1,896	0.11%
2000	1,716,156	2,293	0.13%
2001	1,867,966	4,311	0.23%
2002	1,946,676	6,241	0.32%
2003	2,108,238	4,875	0.23%
2004	2,653,056	2,947	0.11%
2005	2,707,132	1,942	0.07%
2006	2,724,824	1,528	0.06%
2007	2,312,562	1,132	0.05%
2008	2,450,308	2,863	0.12%
2009	2,353,675	2,972	0.13%
2010	2,118,702	2,888	0.14%
2011	1,780,670	2,718	0.15%
2012	1,806,572	4,477	0.25%
2013	1,939,754	7,706	0.40%
2014	2,411,076	7,792	0.32%
2015	2,476,483	7,380	0.30%
2016	2,436,111	5,355	0.22%
2017	2,348,973	1,613	0.07%
2018	2,527,520	763	0.03%
2019	2,544,821	691	0.03%
2020	2,479,388	1,724	0.07%
2021	2,300,953	1,411	0.06%
2022	1,797,957	1,777	0.10%
Mean	2,004,114	2,624	0.13%
1.10411	2,001,117	2,02 1	0.1370

Average combined hatchery- and natural-origin smolt counts for the years which would comprise the age-3, -4, and -5 adult return components for each adult return year. For example, the "Prosser Average Smolts" for adult return year 1988 is the average of hatchery- and natural-origin Prosser smolt estimates for juvenile migration years 1983-1985.

Table 12. Preliminary estimates of Prosser-to-Prosser smolt-to-adult survival (SAR) indices for adult returns from hatchery- and natural-origin coho for the Yakima reintroduction program, juvenile migration years 2000-2021.

Juvenile		Hatchery-origin			Natural-origin			
Migration	Chandler	Prosser	SAR	Chandler	Prosser	SAR		
Year	Smolts ^a	Adults ^b	Index	$Smolts^a$	Adults ^b	Index		
2000	331,503	3,546	1.1%	37,359	1,432	3.8%		
2001	134,574	166	0.1%	40,605	309	0.8%		
2002	155,814	669	0.4%	19,859	1,523	7.7%		
2003	139,135	505	0.4%	9,092	1,820	20.0%		
2004	148,810	2,418	1.6%	18,787	472	2.5%		
2005	204,728	2,898	1.4%	31,631	1,562	4.9%		
2006	204,602	2,404	1.2%	8,298	1,049	12.6%		
2007	260,455	4,131	1.6%	20,131	459	2.3%		
2008	416,708	8,835	2.1%	43,046	982	2.3%		
2009	496,594	5,153	1.0%	25,108	573	2.3%		
2010	341,145	7,216	2.1%	35,158	802	2.3%		
2011	333,891	4,948	1.5%	24,108	550	2.3%		
2012	244,503	2,703	1.1%	17,667	424	2.4%		
2013	483,122	24,178	5.0%	56,947	1,082	1.9%		
2014	337,988	2,943	0.9%	159,642	362	0.2%		
2015	129,084	3,280	2.5%	18,415	103	0.6%		
2016	233,371	2,693	1.2%	227,163	1,162	0.5%		
2017	108,570	2,083	1.9%	12,031	125	1.0%		
2018	299,535	3,566	1.2%	38,451	301	0.8%		
2019	246,178	2,530	1.0%	41,969	744	1.8%		
2020	396,000	12,053	3.0%	10,000	422	4.2%		
2021	323,493	6,079	1.9%	20,092	454	2.3%		
Mean	269,885	4,773	1.6%	41,616	760	2.8% ^d		

^a Yakama Nation estimates of coho smolt passage at Chandler.

b Yakama Nation estimates of age-3 coho returns to Prosser Dam for this juvenile migration cohort.

^c Average estimate derived from PIT-tag detections of Taneum Creek natural coho for juvenile migration years 2009-2011.

^d Excludes migration year 2003.

Table 13. Preliminary McNary Dam smolt to Bonneville Dam adult SAR-indices for hatchery-origin PIT-tagged summer and fall-run chinook released in the Yakima subbasin by brood year and life stage at release, 2006-2015 (PTAGIS query run May 6, 2019).

Brood	Subyear	lings	Yearling	S
Year	Summer	Fall	Summer	Fall
2006		0.0%		8.5%
2007		2.3%		1.2%
2008	2.1%	0.5%		3.0%
2009	2.0%	1.1%		0.7%
2010	3.8%	0.0%	1.9%	1.6%
2011	1.7%	1.2%		1.6%
2012	1.3%	0.9%		
2013	1.1%	0.4%		
2014	0.0%	0.0%		
2015	0.2%	0.4%		
Pooled				•
Mean	1.8%	1.1%	1.9%	1.7%

Table 14. Preliminary McNary Dam smolt to Bonneville Dam age-3 adult return (SAR) indices for hatchery-origin PIT-tagged coho released as smolt (sm) or parr^a in Lower Yakima (LY), Naches (Na), and Upper Yakima (UY) mainstem or tributary areas, brood years 2003-2014 (PTAGIS queries run April 16, 2019).

	LY_sm	Na_sm	UY_sm	Na_parr	UY_parr
2003	3.78%	6.14%	2.92%		_
2004	2.28%	3.16%	3.67%	1.09%	
2005	3.11%	3.31%	2.36%	1.41%	1.96%
2006	9.76%	6.81%	4.17%	5.52%	7.84%
2007	8.16%	2.84%	4.35%	0.52%	3.16%
2008	4.10%	7.59%	8.80%	5.84%	8.30%
2009	0.20%	1.89%	3.37%	1.99%	3.20%
2010	1.67%	1.80%	1.76%	0.98%	3.23%
2011	6.57%	7.15%	11.64%	6.11%	10.49%
2012	1.15%	1.48%	2.58%	1.01%	2.59%
2013	3.35%	2.33%	4.91%		3.03%
2014	0.66%	3.01%	3.05%	3.73%	6.74%
Average	3.73%	3.96%	4.46%	2.82%	5.05%
Geomean	2.46%	3.40%	3.85%	2.03%	4.33%

^a PIT-tagged fish released as parr in brood year 2003, 2004 (Upp. Yak.), and 2013 (Naches) experienced very poor (<1%) survival to McNary Dam as juvenile smolts and were omitted from this analysis.

Discussion:

Calculation of smolt-to-adult survival rate indices for Yakima Basin anadromous salmonids are complicated by the following factors:

1) Smolt accounting at Prosser is based on statistical expansion of Chandler smolt trap sampling data using available PIT-detection and flow data and estimated Chandler entrainment rates. Chandler smolt passage estimates are prepared primarily for the purpose of comparing relative marked versus unmarked passage estimates and not for making survival comparisons. While these Chandler smolt passage estimates

represent the best available data, there may be a high degree of error associated with these estimates due to inherent complexities, assumptions, and uncertainties in the statistical expansion process. Therefore, these estimates are subject to revision.

- 2) Large numbers of Yakima Basin salmonid releases (all CESRF spring Chinook) are adipose-fin clipped and subjected to higher harvest rates than unmarked wild/natural fish in marine and Columbia River mark-selective fisheries. No adjustments have yet been made in the above SAR estimates to account for differential harvest rates in these mark-selective fisheries.
- 3) Due to issues such as water diversion permitting, size required for tagging, and allowing sufficient time for acclimation, release time for many hatchery-origin juveniles (including all CESRF spring Chinook) may be delayed relative to their wild counterparts. For example, spring Chinook from the CESRF are not allowed to volitionally migrate until at least March 15 of their smolt outmigration year; however, juvenile sampling observations at Roza Dam indicate that a substantial number of wild/natural juveniles migrate downstream during the summer, fall, and winter months prior to their smolt outmigration year. Analysis of juvenile migrant PIT detections at Roza Dam (PTAGIS queries run 7/12/2013) indicated that approximately 81% of natural-origin spring Chinook migrated downstream of Roza in the fall or winter as juveniles (before CESRF fish would have the opportunity). Comparison of SAR data for non-contemporaneously migrating juveniles may be invalid.

Given these complicating factors, Tables 10-14 present available smolt-to-adult survival indices for Yakima River spring and summer/fall Chinook and coho. Because of the complexities noted above, these data are useful for analysis of trends but should not be used as direct citations of, or for comparisons of marked and unmarked, smolt-to-adult survival rates. The reader is encouraged to contact Yakama Nation technical staff to discuss these and other issues prior to any use of these data or any other estimation of Yakima Basin SARs that may be available through data obtained from public web sites such as RMPC, PTAGIS, DART, FPC or others.

Substantial juvenile mortality of subyearling releases of summer- and fall-run Chinook occurs in the Yakima River between their release sites and McNary Dam (Neeley 2012b). Strategies have been proposed to address limiting factors (YSFWPB 2004) and improve survival of these releases (Yakama Nation 2019). As these strategies are implemented, we expect SARs for summer- and fall-run Chinook to improve substantially from the estimates provided in Table 11 (Yakama Nation 2019). Additional discussion and results for Yakima Basin spring Chinook SARs are presented in Appendix B.

Status and Trend of Spatial Distribution (Redd Counts)

Methods: Regular foot and/or boat surveys (monitoringresources.org methods 29, 131, 211, 285) were conducted within the established geographic range for each species (this is increasing for coho as acclimation sites are located upriver and as the run increases in size). Redds were individually marked during each survey and carcasses were sampled to collect egg retention, scale sample, sex, and body length information and to check for possible experimental marks. River conditions vary from year to year and preclude complete accounting, especially for fall Chinook and Coho. Other agencies (WDFW, Pacific Northwest National Laboratory, and private contractors) have also conducted foot, boat, or aerial surveys for fall Chinook redds in the Yakima River Basin and we have attempted to incorporate available information from those surveys here.

Results:

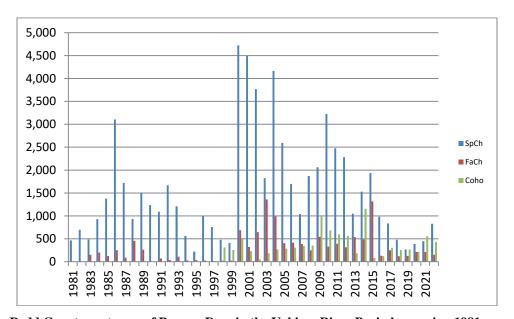


Figure 13. Redd Counts upstream of Prosser Dam in the Yakima River Basin by species, 1981-present.

Table 15. Yakima Basin spring Chinook redd counts and distribution, 1981 – present.

	Uppe		River System		Naches River System				
		Cle						Little	
Year	Mainstem ¹	Elum	Teanaway	Total	American	Naches ¹	Bumping	Naches	Total
1981	237	57	0	294	72	64	20	16	172
1982	610	30	0	640	11	25	6	12	54
1983	387	15	0	402	36	27	11	9	83
1984	677	31	0	708	72	81	26	41	220
1985	795	153	3	951	141	168	74	44	427
1986	1,716	77	0	1,793	464	543	196	110	1,313
1987	968	75 74	0	1,043	222	281	133	41	677
1988	369	74	0	443	187	145	111	47 52	490
1989	770	192	6	968	187	200	101	53	541
1990	727 569	46 62	0	773 630	143 170	159	111 84	51	464
1991 1992	568	164	0		170	161 155	8 4 99	45 51	460
1992	1,082 550	104	1	1,246 656	214	189	99 88	63	425 554
1993	226	64	0	290	89	93	70	20	272
1995	105	12	0	117	46	25	27	6	104
1996	711	100	3	814	28	102	29	25	184
1997	364	56	0	420	111	102	72	48	339
1998	123	24	1	148	149	104	54	23	330
1999	199	24	1	224	27	95	39	25	186
2000	3,349	466	21	3,836	54	483	278	73	888
2001	2,910	374	21	3,305	392	436	257	107	1,192
2002	2,441	275	110	2,826	366	226	262	89	943
2003	772	87	31	890	430	228	216	61	935
2004	2,985	330	129	3,444	91	348	205	75	719
2005	1,717	287	15	2,019	140	203	163	68	574
2006	1,092	100	58	1,250	136	163	115	33	447
2007	665	51	10	726	166	60	60	27	313
2008	1,191	137	47	1,375	158	165	102	70	495
2009	1,349	197	33	1,579	92	159	163	68	482
2010	2,199	219	253	2,671	173	171	168	40	552
2011	1,663	171	64	1,898	212	145	175	48	580
2012	1,276	125	69	1,470	337	196	189	89	811
2013	552	85	34	671	170	66	85	55	376
2014	962	138	53	1,153	129	65	158	27	379
2015	1,258	39	24	1,321	239	177	152	46	614
2016	512	83	22	617	149	106	74	37	366
2017	402	118	23	543	123	84	56	30	293
2018	339	13	0	352	27	56	44	1	128
2019	185	44	9	238	21	1	2	7	31
2020	189	44	8	241	44	25	71	6	146
2021	237	18	5	260	79	59^{2}	49^{2}	0	187
2022	426	40	32	498	198	85	45	2	330
Mean	949	114	26	1,089	153	153	106	43	454

¹ Including minor tributaries.

² Surveys in the Bumping R., Rattlesnake Cr., and upper Nile watershed precluded due to fire; used recent 5-yr average.

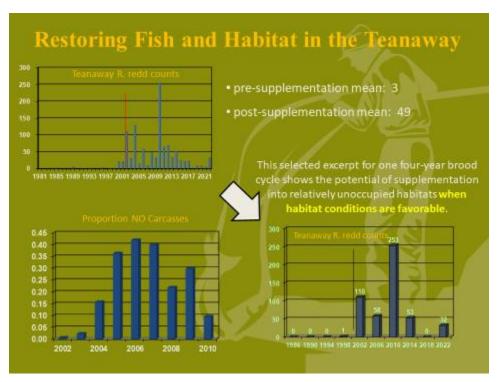


Figure 14. Teanaway River Spring Chinook redd counts, 1981-2022 (vertical lines denote pre- and post-supplementation periods) and the proportion of natural-origin (NO) carcasses observed in intensive spawning ground surveys, 2002-2010.

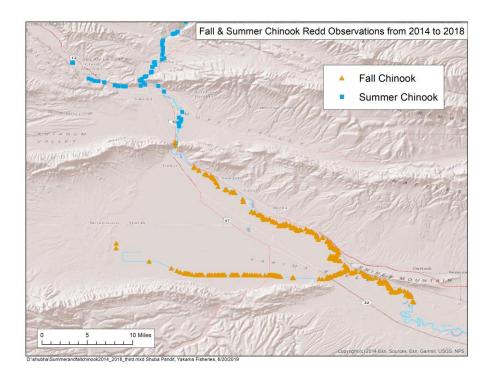


Figure 15. Distribution of summer and fall run Chinook redds in the Yakima River Basin (above Prosser Dam) based on redd observations from 2014 to 2018.

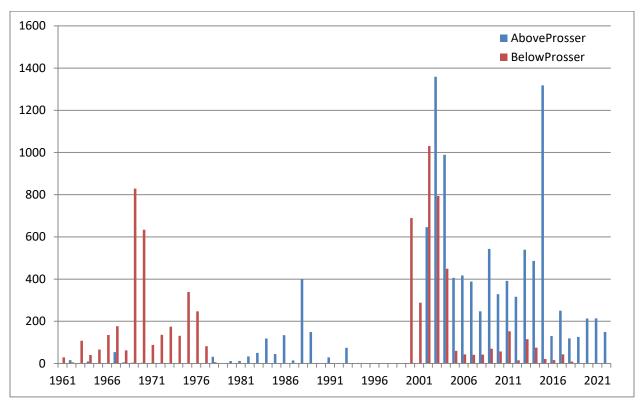


Figure 16. Fall Chinook redd counts above and below Prosser Dam, 1961-present, for years in which surveys were conducted and data are available. Data from YN, WDFW, and Pacific Northwest National Laboratory files. Note that survey completeness is highly variable due to annual flow and turbidity conditions; survey data are partial or incomplete for most years prior to 2000.

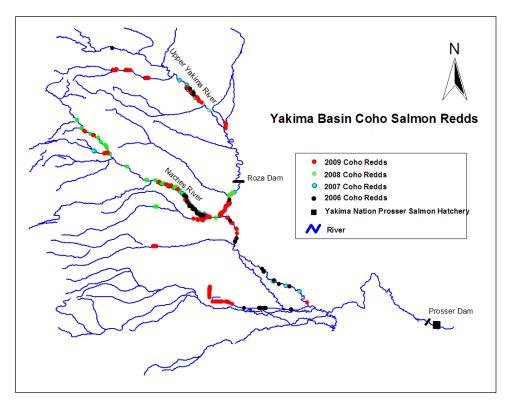


Figure 17. Distribution of coho redds in the Yakima River Basin.

Table 16. Yakima Basin coho redd counts and distribution, 1998 – present.

				,	•
	Yakima	Lower	Naches		
	River	Yakima	River	Tributaries	Total
1998	53	59	6	193	311
1999	104	108		43	255
2000	142	119	137	97	495
2001	27	32	95	77	231
2002	4	8	23	16	51
2003	32	48	56	50	186
2004	33	38	87	112	270
2005	57	50	72	103	282
2006	76	33	44	154	307
2007	63	7	87	188	345
2008	49	14	60	230	353
2009	163	66	281	488	998
2010	75	47	276	282	680
2011	82	37	243	235	597
2012	148	18	228	172	566
2013	45	20	69	52	186
2014	320	256	86	495	1157
2015	13	0	0	69	82
2016	37	0	27	59	123
2017	92	37	36	138	303
2018	46	7	103	99	255
2019	62	8	80	116	266
2020	71	0	50	95	216
2021	62	26	32	440	560
2022	111	19	24	278	432

Discussion:

Spatial distribution of spring Chinook spawners has increased as a result of acclimation site location, salmon homing fidelity and more fully seeding preferred spawning habitats (Dittman et al. 2010). Redd surveys in the Teanaway River conducted annually by Yakama Nation staff since 1981 demonstrate the benefits of reintroducing salmonids into underutilized habitat (Figure 14). The Jack Creek acclimation site began releasing CESRF spring chinook in 2000, with the first age-4 females returning from these releases in 2002. Redd counts in this tributary have increased from a pre-supplementation average of 3 redds per year to a post supplementation average of 49 redds per year. The proportion of natural-origin carcasses increased from less than one percent in 2002 (when CESRF fish first returned to the natural spawning grounds) to 42% in 2006 when the progeny of the 110 redds produced in 2002 (virtually 100% of which were produced by CESRForigin fish) returned. These data clearly indicate that naturally-spawning CESRF spring Chinook were successful in returning natural-origin adults back to the Teanaway River. However, redd counts in the Teanaway River remain at or below pre-supplementation levels in some years, including 2018, indicating that habitat factors (primarily low late-summer and fall season flows) continue to deter returning fish and these fish are likely spawning in nearby mainstem and tributary reaches more conducive to survival of progeny (Fast et al. 2015).

Fall Chinook redd distribution in the Yakima River Basin appears to be experiencing a major transition in recent years. Historical redd survey data indicates that a substantial number of fall Chinook spawned below Prosser Dam in the lower Yakima River. However, from 2003-present, an average of approximately 80 percent (range 62 to 90 percent) of surveyed fall Chinook redds have been located above Prosser Dam (Figure 16). Biologists and habitat experts in the subbasin at least partially attribute this change in spawning distribution to the invasion of water stargrass (see Wise et al. 2009) in the lower 43 miles of the Yakima River. With the reintroduction of summer run Chinook, the Yakama Nation is expanding the distribution of summer/fall run Chinook spawners and redds into the middle reaches of the Yakima Basin between the town of Wapato upstream to the confluence with the Tieton River in the Naches subbasin and to Roza Dam in the Upper Yakima subbasin (Figures 1 and 15; Yakama Nation 2012). Summer-run Chinook have now spawned naturally in these habitats since 2013 after an absence of over 40 years.

Coho redd counts and spawner distribution have increased substantially since reintroduction efforts began (Table 16 and Figure 17). Many redds in the mainstem were located intermixed with fall chinook redds, tucked under cut banks or were found in side channels. Tributary redd enumeration and identification continues to be accurate due to the fall low water levels, improving interagency cooperation, and

relatively good weather. One of the overall goals during the present implementation phase (Phase II) of the coho program is to evaluate the transition of redds from the mainstem river into historic tributaries. With the beginning of Phase II of the Coho Program we observed large increases in tributary spawning, with an annual average of approximately 200 redds counted in tributaries since 2004 (Table 16). We continue to transport returning adults via tankers to historic spawning habitats. These fish are helping to produce consistently robust redd counts (Table 16). Coho continue to volunteer into many tributaries, and the fidelity of adults from summer parr and adult out-plants have shown good results.

Adult Coho plants have also been used to evaluate the feasibility of increasing fish abundance in several tributaries. To determine the spawning success and effects on resident trout of these adult outplants, an intensive monitoring program was conducted in Taneum Creek for brood/spawn years 2007-2014. The results of this evaluation indicate that Coho spawned successfully and have the potential to produce large numbers of returning adult offspring per smolt that survive to McNary Dam as juveniles (Table 17). The total biomass of all salmonids in the stream increased and there were no discernable impacts to resident trout (Temple et al. 2012, 2017). Adult out-plants began again with brood year 2021. Additionally, releases of hatchery raised coho parr from the newly constructed MRS facility are targeted for Taneum Creek. The adults and the parr smolt to adult survival will be closely evaluated using PIT tags in the coming years.

Table 17. Results from Taneum Creek adult out-plant study.

			Number of	McNary	McNary	McNary
	Number of		Juvenile	Juvenile	Juvenile &	Juvenile-
	Adult Females		coho PIT	PIT	Adult PIT	Adult
Year	Outplanted	Redds	Tagged	Detections	Detections	SAR
2007	150	75	1,299	94		_
2008	150	50	1,868	82	7	8.5%
2009	150	130	4,515	177	4	2.3%
2010	150	134	1,054	73	3	4.1%
2011	150	100	743	30	4	13.3%
2012	60	54	1,941	70		
2013	9	5	231	0		
2014	360	200	752	12		
Pooled			12,403	538	18	3.3%

Status and Trend of Diversity Metrics

Methods:

Diversity metrics collected for the Cle Elum Supplementation and Research Facility spring Chinook program in the Upper Yakima River include parameters relating to: eggs (e.g., egg size, KD at emergence, emergence timing, etc.), juveniles (growth and survival, migration timing, fish health, etc.), and adults (size at age, sex composition, migration timing, etc.). Methods for monitoring the spring Chinook program were documented in: the YKFP Monitoring Plan (Busack et al. 1997), the project's "Supplementation Monitoring Plan" (Chapter 7 in 2005 annual report on project genetic studies), and numerous manuscripts in the published literature (see Results and References).

Diversity metrics for returning adult summer/fall Chinook and coho collected at the Prosser Dam denil fish trap include sex ratios, lengths, and weights (monitoringresources.org methods 454, 1548, 1549, 1551, 1577, 1747, 4041, 6723). We also queried the PTAGIS database for PIT-tagged summer- and fall-run Chinook that were released in the Yakima Subbasin in recent years and used PIT-detection data at Bonneville Dam for upstream migrants to estimate age composition and run timing of returning fish.

Results and Discussion:

A detailed presentation of current results for the spring Chinook monitoring program (YN-collected data) are included in Appendix B of this report and are discussed in greater detail in the annual report(s) for WDFW-companion project 1995-064-25. Generally, we have detected small, but significant differences between hatchery- and natural-origin fish in some juvenile and adult traits. Results in the published literature include: Busack et al. (2007), Knudsen et al. (2006, 2008), Larsen et al. (2004, 2006, 2010, 2013), and Pearsons et al. (2009).

Sex ratios, lengths, and weight data for fall Chinook and coho salmon sampled at the Prosser denil adult sampling facility from 2001-present are presented in Tables 18-21. Age composition of summer- and fall-run Chinook are presented in Table 22 and run timing in Figure 18. In addition, preliminary results of some diversity metrics relating to the effort to reestablish a natural spawning coho population in the Yakima Basin were published in Bosch et al. (2007). That study observed divergence in some diversity traits between hatchery- and natural-origin fish suggesting that some renaturalization can be detected in just a few generations after outplanting of hatchery-origin fish in the wild.

Table 18. Sex ratio of upstream migrating fall Chinook sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Return		Sample	Size	Female	Female	Sample Da	te Range
Year	F	J	M	Adult %	Total %	First	Last
2001	186	80	213	46.6%	38.8%	09/10/01	11/19/01
2002	389	61	512	43.2%	40.4%	09/09/02	11/25/02
2003	396	24	224	63.9%	61.5%	09/07/03	11/17/03
2004	185	40	201	47.9%	43.4%	09/06/04	11/23/04
2005	201	8	233	46.3%	45.5%	09/06/05	11/14/05
2006	107	11	84	56.0%	53.0%	09/13/06	11/06/06
2007	42	44	39	51.9%	33.6%	09/10/07	11/06/07
2008	81	23	101	44.5%	39.5%	09/08/08	11/13/08
2009	110	132	95	53.7%	32.6%	09/08/09	11/07/09
2010	239	4	162	59.6%	59.0%	09/08/10	11/03/10
2011	67	10	34	66.3%	60.4%	09/07/11	11/09/11
2012	249	109	264	48.5%	40.0%	09/04/12	11/06/12
2013	272	86	460	37.2%	33.3%	09/16/13	11/22/13
2014	681	78	725	48.4%	45.9%	09/04/14	12/10/14
2015	1047	69	1374	43.2%	42.0%	09/09/15	11/16/15
2016	158	22	128	55.2%	51.3%	09/09/16	11/12/16
2017	122	67	66	64.9%	47.8%	09/13/17	12/05/17
2018	78	23	114	40.6%	36.3%	09/12/18	11/05/18
2019	36	7	22	62.1%	55.4%	09/22/19	11/15/19
2020	20		25	44.4%	44.4%	09/23/20	11/20/20
2021	30	9	31	49.2%	42.9%	09/20/21	10/20/21
2022	21	9	61	25.6%	23.1%	09/15/22	11/02/22
			Mean	50.0%	44.1%		

Table 19. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm), and weights (pounds) of upstream migrating fall Chinook sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Run		Fe	males	Males (excluding Jacks)				
Year	N	Fork	POH	Weight	N	Fork	POH	Weight
2001	186	72.7	60.1	11.0	213	71.5	57.8	9.3
2002	389	78.4	63.9	13.5	512	76.1	60.2	12.1
2003	396	83.4	68.5	15.6	224	83.7	67.0	16.3
2004	185	82.3	67.8	15.1	201	73.9	60.0	11.2
2005	201	80.5	66.3	14.2	233	75.1	60.6	11.5
2006	107	81.5	66.3	15.6	84	81.3	64.6	15.3
2007	42	79.9	64.4	14.8	39	72.8	56.8	11.7
2008	81	70.1	56.5	9.8	101	67.8	54.0	8.9
2009	110	74.1	57.8	11.2	95	69.4	52.5	9.6
2010	239	73.3	57.8	11.3	162	70.9	54.7	9.7
2011	67	76.5	60.4	12.4	34	74.2	57.7	11.3
2012	249	70.1	53.3	9.5	264	66.4	49.6	7.9
2013	272	72.5	56.1	10.1	460	69.8	52.9	8.7
2014	681	76.1	60.8	11.9	725	69.0	53.2	8.6
2015	1047	76.2	59.5	11.4	1374	71.4	54.8	9.2
2016	158	75.3	59.5	9.7	128	71.6	55.3	8.1
2017	122	74.6	58.8	10.8	66	73.9	57.1	10.4
2018	78	72.3	54.4	9.6	114	67.2	48.9	7.5
2019	36	70.2	55.3	8.7	22	68.4	54.2	7.9
2020	20	71.9	51.7	9.1	25	71.4	51.9	8.5
2021	30	73.5	57.5	8.8	31	73.2	56.4	9.6
2022	21	65.8	51.0	7.6	61	64.6	49.6	6.7
Mean		75.1	59.4	11.4		72.0	55.9	10.0

Table 20. Sex ratio of upstream migrating coho sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Return		Sample	Size	Female	Female	Sample Da	te Range
Year	F	J	M	Adult %	Total %	First	Last
2001	1147	44	1024	52.8%	51.8%	09/11/01	11/22/01
2002	72	201	71	50.3%	20.9%	09/11/02	11/25/02
2003	473	89	452	51.1%	46.6%	09/11/03	11/21/03
2004	586	49	509	53.5%	51.2%	09/07/04	11/16/04
2005	531	146	405	56.7%	49.1%	09/13/05	11/15/05
2006	826	97	586	58.5%	54.7%	09/17/06	11/19/06
2007	676	34	538	55.7%	54.2%	09/11/07	11/20/07
2008	666	930	514	56.4%	31.6%	09/08/08	12/04/08
2009	1644	76	1576	51.1%	49.9%	09/09/09	11/20/09
2010	999	35	673	59.7%	58.5%	09/08/10	11/19/10
2011	907	12	776	53.9%	53.5%	09/16/11	11/17/11
2012	1156	108	961	54.6%	52.0%	09/08/12	11/17/12
2013	523	146	528	49.8%	43.7%	09/20/13	11/22/13
2014	4302	135	3668	54.0%	53.1%	09/03/14	12/23/14
2015	656	67	683	49.0%	46.7%	09/13/15	12/09/15
2016	310	101	249	55.5%	47.0%	09/13/16	11/16/16
2017	694	132	752	48.0%	44.0%	09/13/17	12/19/17
2018	343	318	308	52.7%	35.4%	09/06/18	11/05/18
2019	758	28	692	52.3%	51.3%	09/04/19	12/31/19
2020	357	115	180	66.5%	54.8%	09/22/20	11/25/20
2021	567	116	509	52.7%	47.6%	09/20/21	11/06/21
2022	447	19	438	50.5%	49.4%	09/17/22	11/08/22
			Mean	53.9%	47.6%		

Table 21. Sample size (N), mean fork and mid-eye to hypural plate (MEH) lengths (cm), and weights (pounds) of upstream migrating coho sampled at the Prosser Dam right bank denil ladder and fish trap, 2001-present.

Run		Fe	males		N	Iales (excludi	ng Jacks)	
Year	N	Fork	POH	Weight	N	Fork	POH	Weight
2001	1147	65.4	53.7	6.7	1024	65.6	52.4	6.5
2002	72	68.1	54.9	8.5	71	69.4	54.0	8.1
2003	473	65.3	52.9	7.0	452	65.7	51.4	6.8
2004	586	68.8	56.4	8.0	509	67.8	53.9	7.4
2005	531	67.5	54.9	8.0	405	67.6	53.5	7.8
2006	826	71.6	58.2	10.0	586	71.3	55.8	9.4
2007	676	66.3	52.1	7.0	538	65.5	49.9	6.6
2008	666	69.9	56.7	9.6	516	69.8	54.6	9.0
2009	1644	68.1	52.4	7.9	1576	67.2	49.7	7.2
2010	999	69.7	54.2	8.7	673	68.5	51.5	7.8
2011	907	68.6	53.7	8.2	776	68.5	51.7	7.7
2012	1156	64.3	49.5	6.8	961	62.6	46.4	6.0
2013	523	66.2	51.9	6.9	528	64.0	48.4	5.9
2014	4302	65.6	52.6	7.0	3668	63.5	49.8	6.1
2015	656	63.5	50.1	6.0	683	61.9	47.5	5.2
2016	310	66.9	52.7	6.9	249	67.4	51.6	6.4
2017	694	64.5	49.6	6.4	752	63.6	47.8	5.9
2018	343	66.6	51.0	6.8	308	66.0	49.2	6.4
2019	758	64.8	49.7	5.7	692	63.7	47.7	5.2
2020	357	67.4	49.8	7.9	180	66.4	47.9	7.0
2021	567	65.6	51.6	6.9	509	64.0	49.5	6.1
2022	447	66.2	50.5	7.1	438	64.8	48.4	6.5
Mean		66.9	52.7	7.5		66.1	50.6	6.9

Table 22. Age composition of returning hatchery-origin PIT-tagged summer and fall-run chinook released in the Yakima subbasin as subyearling or yearling fish (data from PTAGIS query run May 1, 2019).

Brood	Age at Return							
Year	2	3	4	5	6			
Summer C								
2008	12.5%	12.5%	50.0%	25.0%	0.0%			
2009	5.4%	16.3%	63.6%	14.7%	0.0%			
2010	0.2%	27.5%	61.4%	10.6%	0.2%			
2011	0.0%	12.1%	67.5%	20.4%	0.0%			
2012	1.0%	50.0%	40.8%	8.2%	0.0%			
2013	5.6%	11.1%	77.8%	5.6%	0.0%			
Mean	4.1%	21.6%	60.2%	14.1%	0.0%			
Fall Chino	ok Subyear	lings						
2007	9.7%	47.9%	35.8%	6.6%				
2008	13.3%	53.3%	33.3%	0.0%				
2009	18.9%	40.5%	32.4%	8.1%				
2010	0.0%	66.7%	16.7%	16.7%				
2011	11.6%	34.9%	50.0%	3.5%				
2012	9.7%	61.1%	26.4%	2.8%				
Mean	10.6%	50.7%	32.4%	6.3%				
Summer C	hinook Yea	rlings						
2010^{1}	13.6%	31.2%	44.2%	3.9%	0.6%			
Fall Chino	ok Yearling	ţS.						
2006	96.4%	0.0%	3.6%	0.0%	0.0%			
2007	63.2%	16.2%	8.8%	11.8%	0.0%			
2008	30.9%	36.2%	27.1%	5.8%	0.0%			
2009	20.4%	19.4%	40.8%	19.4%	0.0%			
2010	39.4%	26.8%	27.8%	6.1%	0.0%			
2011	6.4%	16.7%	57.1%	14.7%	5.1%			
Mean	42.8%	19.2%	27.5%	9.6%	0.9%			

¹ 10 of 154 (6.5%) of detections occurred about 90 days post-release in adult ladders at Bonneville Dam and were assumed to be age-1 returns. However, only 2 of these 10 were confirmed as upstream detections based on later detections at dams upstream of Bonneville. The other 8 detections at Bonneville could have been late-migrating juveniles.

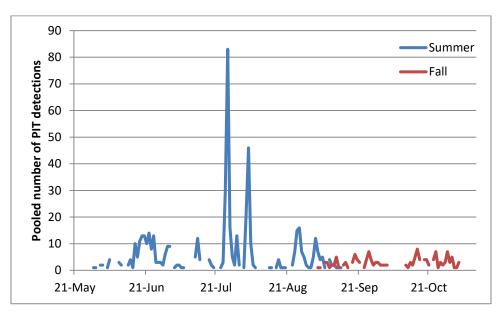


Figure 18. Adult return timing at Prosser Dam of PIT-tagged summer- and fall-run Chinook reared at the Marion Drain and Prosser Hatcheries and released as subyearlings, pooled for return years 2009-2018.

Habitat Monitoring

While the majority of YKFP habitat activities in the Yakima Basin are addressed in a separate project (1997-051-00), we are monitoring stream sediment loads associated with the operation of dams and other anthropogenic factors (e.g. logging, agriculture and road building) under this contract as sediment loads can affect survival of salmonids (https://www.krisweb.com/stream/sediment.htm).

Status and Trend of Fine Sediment

Methods: Representative gravel samples (McNiel core samples, monitoring resources 199) were collected from various reaches in the Little Naches and Upper Yakima Rivers in the fall of 2022. Each sample was analyzed to estimate the percentage of fine or small particles present (<0.85 mm). The Washington State Timber, Fish, and Wildlife program established guidelines that specify the impacts that estimated sedimentation levels can have on salmonid egg-to-smolt survival. These impact guidelines will inform future analyses of "extrinsic" factors on natural production in the Yakima Basin.

Results and Discussion:

Little Naches

A total of 100 McNiel core samples were collected and processed from 9 spawning reaches in the Little Naches drainage this past year. Pyramid Creek has not been sampled since 2009 when the main road going into this reach was decommissioned. Other means to access this sampling site is needed. With this year's monitoring work, the data set for the Little Naches drainage now covers a time period of 38 years for the two historical reaches, and 31 years for the expanded sampling area that includes several tributary streams.

The average percent fine sediment less than 0.85mm for the entire Little Naches drainage in 2022 was 11.3%, greater than the recent 2012-2021 ten-year average of 9.2%, but improved from averages observed prior to 2008 (Figure 19). The overall trend remains downward and similar trends can be seen when looking at individual reach conditions over the longer term monitoring period since 1992.

The overall average fine sediment found in spawning substrate remains relatively low and should lessen mortality on incubating eggs and alevins. The reduced rate of fine sediment found can be partially attributed to less anthropogenic disturbance occurring in the watershed in recent years, other than recreational activity. Timber harvest activity and road building has been minimal for several years. Landowners have also improved roads and trails to reduce sediment delivery. Further, enhanced stream protection measures have been instituted through the Northwest Forest Plan and the Central Cascades Habitat Conservation Plan for over 20 years. These factors have likely helped reduce fine sediment inputs to the stream system. However recreational activity, such as dispersed camping sites and off-road vehicle use near streams, continues to be a concern. Sediment delivery, bank erosion, and loss of riparian vegetation from recreational use have been observed in some localized areas.

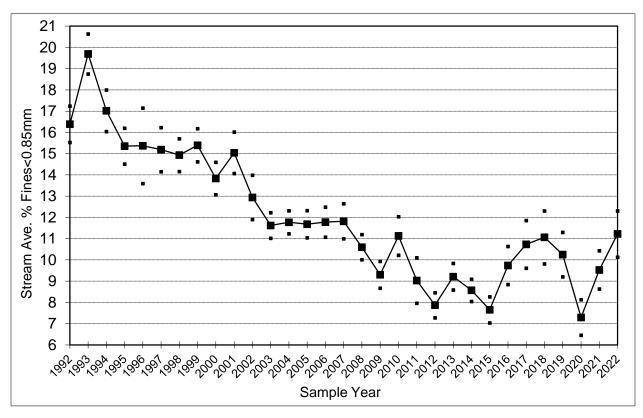


Figure 19. Overall Fine Sediment (<0.85mm) Trends with 95% confidence bounds in the Little Naches River Drainage, 1992-2022.

South Fork Tieton

One reach on the South Fork Tieton River (in the vicinity of Minnie Meadows) has been sampled in the past by the U.S. Forest Service. To the best of our knowledge this reach has not been sampled since 2015. This stream reach typically receives significant bull trout spawning activity and the monitoring efforts provide valuable information on their spawning conditions. Average fine sediment in this reach was 8.9% in 2015, matching the previous low observed in 1999, and is well below the mean for sediment levels for the 17 years that were sampled (Figure 20).

Upper Yakima

A total of 60 samples were collected and processed from the Upper Yakima River drainage this past year (5 reaches, 12 samples from each reach). The same reaches (Stampede Pass, Easton, Camelot to Ensign Ranch, Elk Meadows, and Cle Elum) have been sampled annually for the past 26 years. The 26-year trend in average percent fine sediment less than 0.85mm for the combined Upper Yakima drainage remains downward, although 2022 was the greatest observed average percent fine gravels since 2008 (Figure 21). At this time, we do not know what might have caused increased fine sediment levels in the Upper Yakima system.

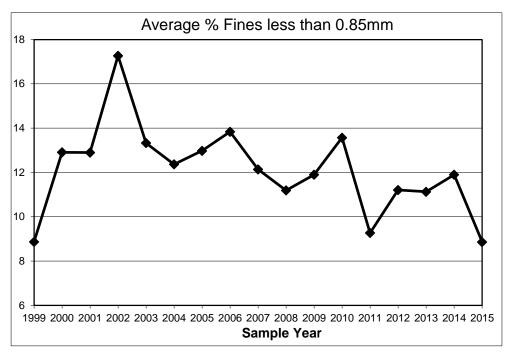


Figure 20. Fine Sediment Trends in the South Fork Tieton River, 1999-2015. Note: Data for 2007 were collected from only 1 Riffle. Data courtesy of U.S. Forest Service.

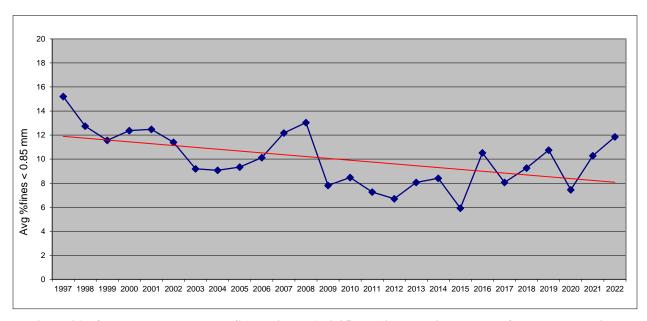


Figure 21. Overall average percent fine sediment (< 0.85 mm) in spawning gravels of the Upper Yakima River, 1997-2022.

Summary

Low rates of fine sediment improve egg and alevin survival and favor salmonid spawning success. The overall trend in average fine sediment levels in the Little Naches and Upper Yakima drainages is decreasing. However, we have observed

increases in some recent years in both drainages that may have been due to effects from the large fires the region has experienced in these years as well as other factors.

The results of the USFS sampling in the South Fork Tieton River were low over a 17-year sampling period. These conditions should be favorable for early life history survival of bull trout.

Detailed field data including additional tables and graphs for samples collected in the upper Yakima and Naches basins can be obtained from Jim Matthews, fisheries biologist for the Yakama Nation (matj@yakamafish-nsn.gov).

Harvest Monitoring

Marine and Mainstem Columbia Fisheries

Methods: We evaluated recoveries of coded-wire tags (CWTs) and PIT tags in out-of-basin fisheries using queries of regional mark information system (<u>RMIS</u>) and PIT Tag Information System (<u>PTAGIS</u>) databases. We coordinated with agencies responsible for harvest management (WDFW, ODFW, USFWS, CRITFC, etc.) to estimate the harvest of target stocks. We reviewed reports produced annually by the <u>Pacific Fisheries Management Council</u> (marine) and the *U.S. v Oregon* <u>Technical Advisory Committee</u> (mainstem Columbia) to evaluate estimated harvest or exploitation rates on comparable stocks in these fisheries.

For spring Chinook, additional information was employed that is not readily available for fall Chinook and coho. Standard run reconstruction techniques (Appendix B) were employed to derive estimates of harvest from the Columbia River mouth to the Yakima River mouth for spring Chinook. Data from databases maintained by the U.S. v Oregon Technical Advisory Committee were used to obtain harvest rate estimates downstream of the Yakima River for the aggregate Yakima River spring Chinook population and to estimate passage losses from Bonneville through McNary reservoirs. These data, combined with the Prosser Dam counts and estimated harvest below Prosser, were used to derive a Columbia River mouth run size estimate and Columbia River mainstem harvest estimate for Yakima spring Chinook.

Results:

Table 23. Marine and freshwater recoveries of CWTs from brood year 1997-2017 releases of spring Chinook from the CESRF as reported to the Regional Mark Information System (RMIS) Dec. 15, 2022.

Brood	ood Observed CWT Recoveries			Expande	Expanded CWT Recoveries			
Year	Marine	Fresh	Marine %	Marine	Fresh	Marine %		
1997	5	56	8.2%	8	321	2.4%		
1998	2	53	3.6%	2	228	0.9%		
1999		2	0.0%		9	0.0%		
2000		14	0.0%		34	0.0%		
2001		1	0.0%		1	0.0%		
2002		7	0.0%		36	0.0%		
2003		4	0.0%		10	0.0%		
2004	2	154	1.3%	15	526	2.8%		
2005	2	96	2.0%	2	304	0.7%		
2006	14	328	4.1%	16	1160	1.4%		
2007	8	145	5.2%	13	1139	1.1%		
2008	5	245	2.0%	7	1634	0.4%		
2009	4	91	4.2%	7	588	1.2%		
2010	4	164	2.4%	9	948	0.9%		
2011	5	186	2.6%	5	1030	0.5%		
2012	4	73	5.2%	2	273	0.7%		
2013	9	65	12.2%	20	534	3.6%		
2014	4	71	5.3%	8	533	1.5%		
2015	2	24	7.7%	2	50	3.8%		
2016	1	26	3.7%	5	63	7.4%		
20171	3	20	13.0%	2	92	2.1%		

^{1.} Reporting of CWT recoveries to the RMIS database typically lags actual fisheries by one to two years. Therefore, CWT recovery data for brood year 2017 are considered preliminary or incomplete.

Table 24. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River mainstem and terminal area fisheries, 1983-present.

	Columbia	Col. R. Mouth	BON to	Yakima	Yakima		Columbia Basin Harvest Summary		Col. F Harves	
Year	R. Mouth Run Size	to BON Harvest	McNary Harvest	R. Mouth Run Size	River Harvest	Total	Wild	CESRF	Total	Wild
1983	2,449	118	104	1,441	84	305	305		12.5%	12.5%
1984	3,887	135	267	2,658	289	691	691		17.8%	17.8%
1985	5,264	191	186	4,560	865	1,242	1,242		23.6%	23.6%
1986	13,567	280	802	9,439	1,340	2,423	2,423		17.9%	17.9%
1987	6,160	96	378	4,443	517	991	991		16.1%	16.1%
1988	5,667	363	394	4,246	444	1,201	1,201		21.2%	21.2%
1989	8,921	213	685	4,914	747	1,644	1,644		18.4%	18.4%
1990	6,946	351	472	4,372	663	1,487	1,487		21.4%	21.4%
1991	4,648	184	290	2,906	32	506	506		10.9%	10.9%
1992	6,212	103	384	4,599	345	832	832		13.4%	13.4%
1993	5,132	44	315	3,919	129	488	488		9.5%	9.5%
1994	2,251	87	113	1,302	25	225	225		10.0%	10.0%
1995	1,394	1	69	666	79	149	149		10.7%	10.7%
1996	5,898	6	309	3,179	475	790	790		13.4%	13.4%
1997	5,192	3	348	3,173	575	926	926		17.8%	17.8%
1998	2,867	3	143	1,903	188	333	333		11.6%	11.6%
1999	4,160	4	198	2,781	604	806	806		19.4%	19.4%
2000	28,783	58	1,782	19,101	2,458	4,298	4,174	124	14.9%	14.9%
2001	32,253	969	4,230	24,147	4,630	9,830	5,654	4,176	30.5%	28.6%
2002	25,307	1,278	2,923	15,815	3,108	7,309	2,757	4,551	28.9%	24.0%
2003	10,277	286	902	7,227	440	1,628	987	641	15.8%	14.7%
2004	24,212	1,023	2,329	16,820	1,679	5,031	2,876	2,154	20.8%	16.2%
2005	13,302	354	893	9,588	474	1,721	1,363	358	12.9%	12.1%
2006	12,149	310	898	6,593	600	1,808	1,038	770	14.9%	13.2%
2007	5,218	174	477	4,457	279	930	460	470	17.8%	15.5%
2008	12,553	1,204	1,870	9,273	1,532	4,607	1,360	3,247	36.7%	25.2%
2009	13,693	1,210	1,089	11,395	2,353	4,651	1,318	3,333	34.0%	23.9%
2010	18,568	1,631	2,778	13,746	1,741	6,150	1,517	4,633	33.1%	21.8%
2011	23,322	1,098	1,794	18,520	4,380	7,272	2,590	4,682	31.2%	22.4%
2012	17,202	850	1,622	12,612	3,320	5,792	2,364	3,428	33.7%	26.7%
2013	14,924	879	1,035	10,602	2,653	4,567	1,849	2,718	30.6%	23.7%
2014	17,303	716	2,208	11,868	2,171	5,095	2,089	3,006	29.4%	22.4%
2015	11,992	476	1,437	9,848	815	2,727	1,454	1,273	22.7%	17.8%
2016	10,110	454	961	7,281	444	1,859	950	910	18.4%	15.1%
2017	12,196	493	924	7,544	1,272	2,688	855	1,833	22.0%	13.5%
2018	6,236	248	638	3,737	548	1,435	460	976	23.0%	16.4%
2019	3,756	68	259	2,250	40	367	130	237	9.8%	8.6%
2020	5,770	62	342	3,413	68	472	273	199	8.2%	7.6%
2021	5,616	173	333	4,026	16	522	191	331	9.3%	7.2%
2022 ¹	8,594	255	817	6,432	471	1,543	591	953	18.0%	12.2%
Mean	10,599	411	950	7,420	1,072	2,433	1,308	1,125	19.6%	16.7%

^{1.} Preliminary.

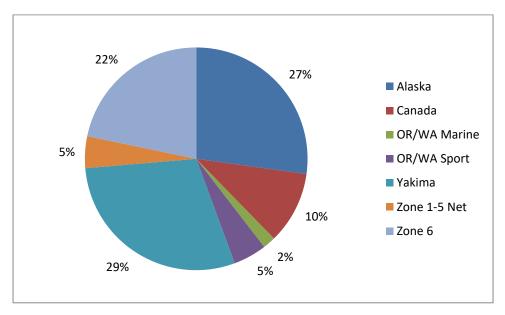


Figure 22. Distribution of coded-wire tag recoveries of Yakima Basin summer/fall run Chinook releases in marine, mainstem Columbia River, and Yakima Basin fisheries. Data retrieved from the regional mark information system (RMIS) for brood year 1997-2007 recoveries.

Recovery data for Yakima River-origin coho are presently limited because few fish have been coded wire-tagged until recent years. We will continue to collect and analyze CWT-recovery data from regional databases and will report this information in the future. 'All H Analyzer' (AHA) modeling for Master Planning purposes assumed that natural- and hatchery-origin Yakima River coho have an exploitation rate of approximately 40 and 60 percent, respectively (Yakama Nation 2019). These estimates include coho caught in marine, Columbia River and Yakima River fisheries.

Discussion:

Based on available CWT information, harvest managers have long assumed that Columbia River spring Chinook are not harvested in any abundance in marine fisheries as their ocean migration does not generally overlap either spatially or temporally with the occurrence of marine fisheries (TAC 1997). Harvest recoveries of CESRF spring Chinook as reported to RMIS to date appear to confirm this, as marine harvest apparently accounts for only about 0-3% of the total harvest of Yakima Basin spring Chinook (Table 23). Adult returns of spring Chinook from the CESRF appear to be making substantial contributions to Columbia Basin fisheries (Table 24).

Yakima Basin summer/fall Chinook are harvested in marine fisheries from Alaska to southern Oregon, and in Columbia River fisheries from the mouth to the Hanford Reach (Figure 22). Approximately 71% of harvest recoveries from Yakima Basin fall Chinook releases for brood years 1997-2007 occurred in marine (44%) and mainstem Columbia (27%) fisheries. Out-of-basin harvest rates have not been estimated

specifically for Yakima Basin summer/fall run Chinook, but the 1982-89 brood year average ocean fisheries exploitation rate for mid-Columbia River summer/fall Chinook was 39%, with a total exploitation rate of 68% estimated for the same years (PSC 1994). Chapman et al. (1994) estimated that the 1975-87 brood year mean exploitation rate for fall Chinook released from Priest Rapids Hatchery was 64%. Harvest rates of these stocks in U.S. fisheries since the mid-1990s have been reduced due to Endangered Species Act (ESA) management concerns as these stocks are intermixed with ESA-listed Snake River fall Chinook populations (NMFS 1999a-d and 2000a-c). It is assumed that Yakima River summer/fall run Chinook are harvested at the same rate in these fisheries as other mid-Columbia River summer/fall Chinook stocks.

Yakima Subbasin Fisheries

Methods: The two co-managers, Yakama Nation and WDFW, are responsible for monitoring their respective fisheries in the Yakima River. Each agency employs fish monitors dedicated to creel surveys and/or fisher interviews at the most utilized fishing locations and/or boat ramps. From these surveys, standard techniques are employed to expand fishery sample data for total effort and open areas and times to derive total harvest estimates. Fish are interrogated for various marks. Methods are generally consistent with monitoringresources.org methods 4056 and 4231.

Results:

Table 25. Spring Chinook harvest in the Yakima River Basin, 1983-present.

-	Tribal		Non-Tribal		R	River Totals		
Year	CESRF	Natural	CESRF	Natural	CESRF	Natural	Total	Harvest Rate ¹
1983		84		0		84	84	5.8%
1984		289		0		289	289	10.9%
1985		865		0		865	865	19.0%
1986		1,340		0		1,340	1,340	14.2%
1987		517		0		517	517	11.6%
1988		444		0		444	444	10.5%
1989		747		0		747	747	15.2%
1990		663		0		663	663	15.2%
1991		32		0		32	32	1.1%
1992		345		0		345	345	7.5%
1993		129		0		129	129	3.3%
1994		25		0		25	25	1.9%
1995		79		0		79	79	11.9%
1996		475		0		475	475	14.9%
1997		575		0		575	575	18.1%
1998		188		0		188	188	9.9%
1999		604		0		604	604	21.7%
2000	53	2,305		100	53	2,405	2,458	12.9%
2001	572	2,034	1,252	772	1,825	2,806	4,630	19.9%
2002	1,373	1,207	492	36^{2}	1,865	1,243	3,108	20.6%
2003	134	306	0	0	134	306	440	6.3%
2004	289	712	569	109^{2}	858	820	1,679	11.0%
2005	46	428	0	0	46	428	474	5.4%
2006	246	354	0	0	246	354	600	9.5%
2007	123	156	0	0	123	156	279	6.5%
2008	521	414	586	11^{2}	1,107	426	1,532	17.8%
2009	1,089	715	541	82	1,630	722	2,353	19.4%
2010	345	194	1,154	48^{2}	1,499	241	1,741	13.2%
2011	1,361	1,261	1,579	179^{2}	2,940	1,440	4,380	24.4%
2012	1,220	1,302	735	63^{2}	1,955	1,364	3,320	27.5%
2013	846	975	786	46^{2}	1,632	1,021	2,653	25.9%
2014	576	715	826	54^{2}	1,402	769	2,171	19.2%
2015	121	271	385	38^{2}	506	309	815	8.7%
2016	103	185	132	24^{2}	235	209	444	6.4%
2017	217	201	750	104^{2}	967	305	1,272	17.8%
2018	154	115	259	20^{2}	413	136	548	15.2%
2019	24	16	0	0	24	16	40	1.8%
2020	26	42	0	0	26	42	68	2.0%
2021	9	7	0	0	9	7	16	0.4%
2022	61	85	300	25	361	110	471	7.7%
Mean	430	531	470	70	900	596	1,119	12.5%

Harvest rate is the total Yakima Basin harvest as a percentage of the Yakima River mouth run size.
 Includes estimate of post-release mortality of unmarked fish.

Table~26.~Estimated~summer-~and~fall-run~Chinook~return,~escapement,~and~harvest~in~the~Yakima~River,~1998-2022.~Data~from~WDFW~and~YN~databases.

Escapement										
	Total Return		Above Prosser		Below Prosser		WA Recreational Harvest			
Year	Adult	Jack	Adult	Jack	Adult	Jack	Adult	Jack	Rate	
1998	1,743	106	1,064	84	645	22	34	0	1.8%	
1999	4,056	43	1,876	20	2,046	23	134	0	3.3%	
2000	4,557	1,138	1,371	922	2,931	194	255	22	4.9%	
2001	5,886	869	3,651	660	1,293	151	942	58	14.8%	
2002	13,369	211	6,146	95	4,923	116	2,300	0	16.9%	
2003	10,092	193	4,796	79	3,874	73	1,422	41	14.2%	
2004	5,825	271	2,862	85	2,231	140	732	46	12.8%	
2005	3,121	45	1,920	22	491	7	710	16	22.9%	
2006	2,299	67	1,499	29	363	10	437	28	19.7%	
2007	1,318	460	892	240	194	26	232	194	24.0%	
2008	3,403	208	2,739	124	137	17	527	67	16.4%	
2009	3,315	772	2,381	591	424	106	510	75	14.3%	
2010	3,474	176	2,763	125	270	12	441	39	13.2%	
2011	3,325	705	2,318	400	470	81	537	224	18.9%	
2012	5,553	1,468	3,751	963	1098	211	704	294	14.2%	
2013	13,005	1,541	8,537	995	1936	194	2,532	352	19.8%	
2014	12,839	1,371	8,302	1,003	2,969	302	1,568	66	11.5%	
2015	15,533	769	8,644	559	5,224	156	1,665	54	10.5%	
2016	7,982	735	5,688	585	1,372	119	922	31	10.9%	
2017	3,116	399	1,927	278	719	105	470	16	13.8%	
2018	1,739	147	1,137	76	397	46	205	25	12.2%	
2019	1,420	161	869	78	406	21	145	62	13.1%	
2020	2,734	200	1,873	105	631	40	230	55	9.7%	
2021	2,924	497	1,875	153	754	273	295	71	10.7%	
 2022	3,022	683	1,700	446	820	151	502	86	15.9%	

Table 27. Estimated Coho return, escapement, and harvest in the Yakima River, 1999-2022. Data from WDFW and YN databases.

	Escapement										
	Total Return		Prosser Dam		Hatchery Denil		WA Recreational Harvest				
Year	Adult	Jack	Adult	Jack	Adult	Jack	Adult	Jack	Rate		
1999	3,906	91	3,852	91			54	0	1.4%		
2000	4,444	1,841	4,390	1,826			54	15	1.1%		
2001	5,032	68	4,978	68			54	0	1.1%		
2002	515	343	475	343			40	0	4.7%		
2003	2,192	162	2,192	162			0	0	0.0%		
2004	2,367	74	2,325	64			42	10	2.1%		
2005	2,897	225	2,890	225			7	0	0.2%		
2006	4,478	175	4,335	175	125	0	18	0	0.4%		
2007	3,461	64	3,153	60	300	4	8	0	0.2%		
2008	4,636	1,917	3,890	1,809	700	58	46	50	1.5%		
2009	9,843	873	8,517	573	1300	300	26	0	0.2%		
2010	5,776	567	4,811	183	915	384	50	0	0.8%		
2011	8,073	171	6,424	121	1594	50	55	0	0.7%		
2012	5,511	264	4,298	164	1200	100	13	0	0.2%		
2013	3,173	848	2,290	395	837	412	46	41	2.2%		
2014	25,368	584	20,997	427	4263	157	108	0	0.4%		
2015	3,314	300	2,210	105	1095	195	9	0	0.2%		
2016	3,383	374	1,693	188	1690	186	0	0	0.0%		
2017	3,920	274	3,051	222	804	34	65	18	2.0%		
2018	2,236	835	1,690	440	518	365	28	30	1.9%		
2019	3,921	105	2,506	52	1361	46	54	7	1.5%		
2020	3,274	3,228	2,303	524	971	2704	0	0	0.0%		
2021	12,654	1,745	4,129	269	8,346	1,450	179	26	1.4%		
2022	6,425	469	2,395	62	3,974	393	56	14	1.0%		

Discussion:

Adult returns of spring Chinook from the CESRF have substantially increased fishing opportunity for all fishers in the Yakima Basin (Table 25) and returned recreational fisheries to the Basin after a 40-year absence. This has contributed to improved relationships between all the Basin's stakeholders and increased opportunities for collaboration.

Recreational fishers enjoy a successful annual fall Chinook fishery situated primarily near the mouth of the Yakima River (Table 26). Tribal fishers harvest a substantial, but unquantified number of Yakima Basin-destined fall Chinook (Figure 22) and coho in commercial gillnet fisheries in the Zone 6 fishing area. Because of the quantity and relatively higher quality of fall Chinook and coho available to tribal fishers in Zone 6 Columbia and Klickitat River fisheries, Yakima River tribal harvest is typically at or near zero even though regulations allowing fall season fisheries in the Yakima River are propagated annually by the Yakama Nation.

Hatchery Research

Effect of Artificial Production on the Viability of Natural Fish Populations

WDFW is addressing some critical uncertainties (see <u>Columbia River Basin Research Plan</u> and <u>Critical Uncertainties for the Columbia River Basin Fish and Wildlife Program</u>) related to genetic and ecological interactions under project <u>1995-064-25</u>. We are working jointly with WDFW to address the following additional fish propagation uncertainties:

- 1.2. Can hatchery production programs meet adult production and harvest goals (integrated and segregated) while protecting naturally spawning populations?
- 1.4. What is the magnitude of any demographic benefit or detriment to the production of natural-origin juveniles and adults from natural spawning of hatchery-origin supplementation adults?
- 1.5. What are the range, magnitude and rates of change of natural spawning fitness of integrated (supplemented) populations, and how are these related to management rules including the proportion of hatchery fish permitted on the spawning grounds, and the proportion of natural origin adults in the hatchery broodstock?

Methods:

The YKFP began a spring Chinook salmon hatchery program at the CESRF near Cle Elum on the upper Yakima River (river kilometer 297, measuring from the confluence with the Columbia River; Figures 1 and 23) in 1997. This program is a supplementation effort targeting the upper Yakima River population and is designed to test whether artificial propagation can be used to increase natural production and harvest opportunities while limiting ecological and genetic impacts (RASP 1992). It is an integrated hatchery program (Mobrand et al. 2005) because only natural-origin brood-stock are used and returning hatchery-origin adults are allowed to spawn in the wild. The program employs "best practice" hatchery management principles (see Cuenco et al. 1993, Mobrand et al. 2005) including reduced pond densities, strict disease management protocols, random brood-stock selection, and factorial mating (Busack and Knudsen 2007) to maximize effective population size. Fish are reared at the central facility, but released from three acclimation sites located near the central facility at: Easton approximately 25km upstream of the central facility, Clark Flat about 25km downstream of the central facility, and Jack Creek about 12km upstream from the Teanaway River's confluence with the Yakima River (Figure 23). The

CESRF collected its first spring Chinook brood-stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. The first generation of offspring of CESRF and wild fish spawning in the wild returned as adults in 2005. The program uses the adjacent, un-supplemented Naches River population as an environmental and wild control system.

To evaluate demographic benefits for spring Chinook, we compared redd count and natural-origin adult return data for the supplemented Upper Yakima and unsupplemented (control) Naches populations using a Before/After Control/Impact (BACI) analysis (Stewart-Oaten et al. 1986; Smith et al. 1993). For redd counts, the before period was defined as 1981 to 2000 and the after period as 2001 to present (hatchery-origin age-4 adults first returned to integrate with natural-origin fish on the natural spawning grounds in 2001). The first natural-origin returns of age-4 fish from these integrated population redds did not occur until 2005, so the pre- and post-supplementation (before/after) periods for natural-origin return evaluation were defined as 1982 to 2004 and 2005 to present, respectively. The spring Chinook findings described below were published in Fast et al. (2015). We are working with WDFW to incorporate additional out-of-basin control populations in this evaluation and these results will be considered for publication at a later date.

To evaluate fitness parameters for an integrated spring Chinook population, we used methods described in Knudsen et al. (2008), Schroder et al. (2008, 2010, and 2012) and Waters et al. (2015; discussed further below under Hatchery Reform). For coho, we conducted preliminary evaluation of both demographic benefits and some fitness parameters using methods described in Bosch et al. (2007).

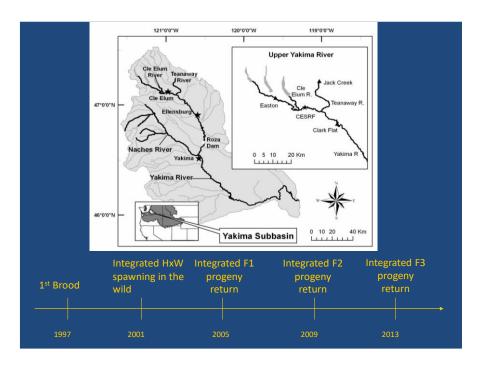


Figure 23. Map of the Yakima River Basin, Cle Elum Supplementation and Research Facility (CESRF) locations, and timeline of the spring Chinook supplementation program.

Results:

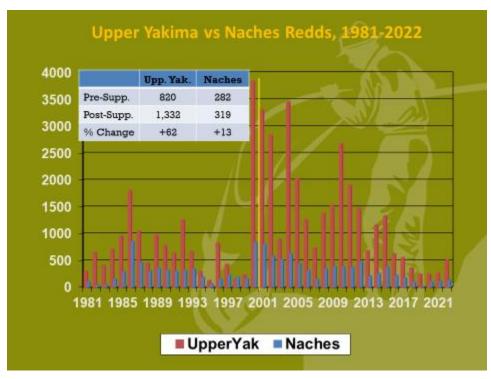


Figure 24. Spring Chinook redd counts in the supplemented Upper Yakima (red bar) relative to the unsupplemented Naches (control; blue bar) for the pre- (1981-2000) and post-supplementation (2001-2022) periods.

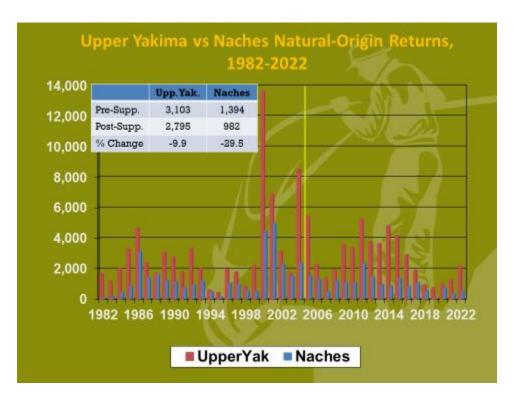


Figure 25. Natural-Origin returns of Spring Chinook in the supplemented Upper Yakima (red bar) relative to the un-supplemented Naches (control; blue bar) for the pre- (1982-2004) and post-supplementation (2005-2022) periods.

Discussion:

Spring Chinook redd abundance is greater for both the supplemented Upper Yakima and Naches control populations in the post-relative to pre-supplementation periods (Figure 24). Redd counts in the post-supplementation period (2001-2022) increased in the supplemented Upper Yakima (+62.4%; P=0.08) and in the un-supplemented Naches control system (+13.1%; P=0.57) relative to the pre-supplementation period (1981-2000); however, neither change was statistically significant. As noted above, spatial distribution of spring Chinook has also increased as a result of supplementation with dramatic increases in redd abundance observed in the Teanaway River (Figure 14) in some years.

Changes in mean natural-origin return abundance in the post-supplementation period (2005-2022) relative to the pre-supplementation period (1982-2004) were not significant in either the supplemented upper Yakima River (-9.9%; P=0.69; Figure 25) or the unsupplemented Naches River system (-29.5%; P=0.21; Figure 25). However, natural-origin return abundance in the Naches River (combined Naches and American populations) declined to an estimated 160 fish in 2019. Nehlsen et al. (1991) identified "populations having recent (within the past 1 to 5 years) escapements under 200, in the absence of evidence that they were historically small", as populations "at

high risk of extinction". As we have noted, many factors, unrelated to hatchery production actions, appear to be inhibiting natural productivity (see status and trend of adult productivity) throughout the Yakima Basin.

With respect to spring Chinook fitness parameters we found the following. The relationships between reproductive traits and body length were not significantly altered by a single generation of hatchery exposure. However, because hatchery females had smaller body sizes, the distributions of linked traits, such as total gamete mass and fecundity, differed by as much as 0.6 SD, probably resulting in some fitness loss. Our data support the idea that a single generation of state-of-the-art conservation hatchery propagation can produce fish with reproductive traits similar to those of wild fish, given comparable body size (Knudsen et al. 2008). No differences were detected in the egg deposition rates of wild and hatchery origin females, but pedigree assignments based on microsatellite DNA showed that the eggs deposited by wild females survived to the fry stage at a 5.6% higher rate than those spawned by hatchery-origin females (Schroder et al. 2008). Behavior and breeding success of wild and hatchery-origin males were found to be comparable (Schroder et al. 2010). Large anadromous males produced 89%, jacks 3%, yearling precocious 7%, and sub-yearling precocious 1% of the fry in our tests suggesting that large anadromous males generate most of the fry in natural settings when half or more of the males present on a spawning ground use this life history strategy (Schroder et al 2012). For additional detail on Spring Chinook findings, see Fast et al. (2015). Finally, in addition to the relative reproductive success (RRS) results reported by Schroder et al. (2008 and 2010) for artificial spawning channel studies, evaluation of RRS for all integrated hatcheryand natural-origin spawners above Roza Dam for brood years 2007-2011 has been completed (Koch et al. 2022).

The YKFP is presently studying the release of over 1.0 million coho smolts annually from acclimation sites in the Naches and Upper Yakima subbasins. These fish are a combination of in-basin production from brood-stock collected in the vicinity of Prosser Dam plus out-of-basin stock generally reared at Willard or Eagle Creek National Fish Hatcheries and moved to the Yakima Subbasin for final rearing and release. Monitoring of these efforts to re-introduce a sustainable, naturally spawning coho population in the Yakima Basin have indicated that coho returns averaged over 6,000 fish from 1997-2022 (an order of magnitude improvement from the average for years prior to the project) including estimated returns of wild/natural coho averaging over 800 fish annually since 2001 (Figure 4). Coho re-introduction research has demonstrated that hatchery-origin coho, with a legacy of as many as 10 to 30 generations of hatchery-influence, can reestablish a naturalized population after as few as 3 to 5 generations of outplanting in the wild (Bosch et al. 2007). The project is working to further develop a locally adapted brood-stock and to establish specific release sites and strategies that optimize natural reproduction and survival.

Effectiveness of Hatchery Reform

Hatcheries have long been a part of the fisheries landscape in the Pacific Northwest with programs originally designed to provide abundant returns for harvest in river ecosystems that were becoming increasingly exploited to serve human needs (Lichatowich 1999). Historically, hatchery programs were designed to release a specified number of juveniles from a central facility, and adult survivors, after providing many fish for harvest during their marine and freshwater migrations, would return to swim-in ladders and adult holding ponds at that same facility to spawn successive generations. Over the past two decades or more, such programs have been the subject of much scientific study regarding risks, such as domestication, they pose to natural populations if these fish spawn in the wild.

The concepts of supplementation and hatchery reform, where hatchery programs could be (re)designed to serve conservation as well as harvest purposes, first began to appear in regional discussions and the literature in the late 1980s and early 1990s (e.g., RASP 1992; Cuenco et al. 1993). In Mobrand et al. (2005) and Paquet et al. (2011), the Hatchery Scientific Review Group (HSRG) described in more scientific detail several principles that should guide integrated (conservation-oriented) hatchery programs which purposefully allow fish to spawn in the wild (note that virtually all of the HSRG recommendations were designed into the integrated CESRF program described above). The HSRG reports also recommended that traditional, harvest-oriented hatchery programs should be segregated as much as possible from natural populations to minimize risks by limiting the number of returning fish that escape to natural spawning grounds.

YKFP efforts to monitor and evaluate hatchery reform focus on the CESRF spring Chinook program which was designed explicitly for this purpose from its inception (BPA 1996). To the extent that is practical, we will evaluate similar metrics for the summer/fall run Chinook and coho programs and publish those results in future reports as the Master Plan (Yakama Nation 2019) is implemented and the programs mature over time.

In addition to the integrated (supplementation-S) hatchery program described above for the CESRF, this facility also introduced a segregated "hatchery control" (HC) program in 2002 as recommended by independent scientific review. To protect the integrity of the integrated program evaluation described above, returning HC line fish were either harvested or trapped and removed at the Roza Adult Monitoring Facility (RAMF); no HC line fish were allowed to escape to the spawning grounds (determination of fish origin was based on a differential marking strategy for S and HC fish; unmarked fish were presumed wild). CESRF-project scientists hypothesized

that HC-line fish, which use only returning hatchery-origin fish as brood source, would increasingly diverge in phenotypic and genetic characteristics from wild (WC or wild control) fish with increasing generations of hatchery influence, whereas S-line fish, which use only wild or natural-origin fish for brood source, would remain relatively close in characteristics to wild fish (Figure 26). These hypothetical outcomes were based on hatchery reform theory which suggests that, by using only wild or natural-origin parents to spawn successive generations of fish in the hatchery environment, mean fitness of an integrated population in the natural environment can be maintained relatively close to that of a wild population (Mobrand et al. 2005).

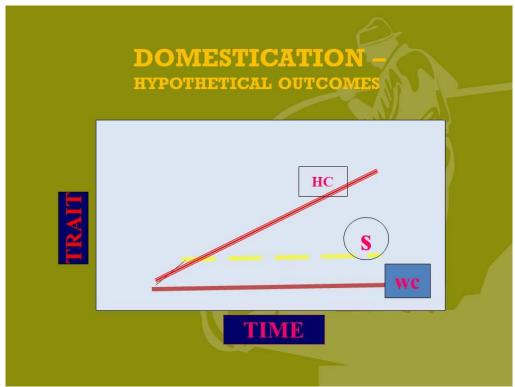


Figure 26. Hypothetical outcomes of trait divergence (domestication effects) over time for a segregated (hatchery-control or HC) line of fish, compared to an integrated (supplementation or S) line of fish and a wild (wild-control or WC) line of fish (D. Fast, Yakama Nation).

This section reports on our efforts to evaluate the effectiveness of hatchery reform measures implemented in the CESRF program.

Methods:

Methods for enumerating natural- and CESRF-origin fish at Roza Dam were described above (Status and Trend of adult abundance) and in Knudsen et al. (2006). Methods for evaluating genetic differentiation between the wild founding, integrated, and segregated populations at the CESRF were described in Waters et al. (2015).

A recently developed parameter to monitor the mean fitness of an integrated population in the natural environment is called Proportionate Natural Influence (PNI). PNI is an approximation of the rate of gene flow between the natural environment and the hatchery environment (Busack et al. 2008). The equation describing PNI is

$$PNI = \frac{pNOB}{pNOB + pHOS}$$

where pNOB is the proportion of natural-origin brood-stock and pHOS is the proportion of hatchery-origin spawners. We evaluated PNI for the CESRF program using a pNOB value of 1.0 as only natural-origin fish were used for the integrated program's broodstock.

Results and Discussion:

For CESRF integrated program return years 2001-2022, PNI averaged 65% while pHOS averaged 54% (Table 28). As stated in the introduction to this report and in the final Environmental Impact Statement for the Yakima Fisheries Project (BPA 1996), one of the explicit purposes of the project is to test the assumption that new artificial propagation or hatchery reform techniques (Cuenco et al. 1993, Mobrand et al. 2005) can be used to increase natural production without causing significant impacts to existing natural populations. Therefore, it has always been the intent of this project to purposely allow integrated hatchery-origin fish to escape to the natural spawning grounds, i.e., we intentionally maintained a relatively high pHOS rate. Even with a high pHOS relative to recommendations, PNI for the CESRF integrated program remained in the "low hatchery influence for conservation of natural populations" category described by the HSRG (Paquet et al. 2011).

The project will continue to monitor PNI considering factors such as: policy input regarding controlling the number and types of fish allowed to escape to natural spawning areas, meeting overall production goals of the project, guidance from the literature relative to percentage of hatchery fish on the spawning grounds with fitness loss, considerations about what risk is acceptable in a project designed to evaluate impacts from that risk, and the numerous risk containment measures already in place in the project. The State of Washington is using mark-selective fisheries in the lower Columbia River and, when possible, in the lower Yakima River in part as a tool to manage escapement proportions. In 2011, the project implemented an effort to transfer some returning hatchery-origin CESRF adults from Roza Dam to Lake Cle Elum for the purpose of returning marine derived nutrients and salmon to the watersheds that feed the lake. These measures will also increase PNI in the major

spawning areas of the Upper Yakima Basin. Additional adaptive management measures will be considered when and if monitoring and evaluation indicates a need.

Table 28. Escapement (Roza Dam counts less brood-stock collection and harvest above Roza) of natural-(NoR) and hatchery-origin (HoR) spring Chinook to the upper Yakima subbasin, 1982 – present.

	Wild/	Natural ((NoR)	CE	SRF (Ho	oR)		Total			
Year	Adults	Jacks	Total	Adults	Jacks	Total	Adults	Jacks	Total	pHOS1	PNI^1
1982			1,146								
1983			1,007								
1984			1,535								
1985			2,331								
1986			3,251								
1987			1,734								
1988			1,340								
1989			2,331								
1990			2,016								
1991			$1,583^2$								
1992			3,009								
1993			1,869								
1994			563								
1995			355								
1996			1,631								
1997	1,141	43	1,184								
1998	369	18	387								
1999	498	468	966								
2000	10,491	481	10,972		688	688	10,491	1,169	11,660	5.9%	
2001	4,454	297	4,751	6,065	982	7,047	10,519	1,279	11,798	59.7%	62.6%
2002	1,820	89	1,909	6,064	71	6,135	7,884	160	8,044	76.3%	56.7%
2003	394	723	1,117	1,036	1,105	2,141	1,430	1,828	3,258	65.7%	60.3%
2004	6,536	671	7,207	2,876	204	3,080	9,412	875	10,287	29.9%	77.0%
2005	4,401	175	4,576	627	482	1,109	5,028	657	5,685	19.5%	83.7%
2006	1,510	121	1,631	1,622	111	1,733	3,132	232	3,364	51.5%	66.0%
2007	683	161	844	734	731	1,465	1,417	892	2,309	63.4%	61.2%
2008	988	232	1,220	2,157	957	3,114	3,145	1,189	4,334	71.9%	58.2%
2009	1,843	701	2,544	2,234	2,260	4,494	4,077	2,961	7,038	63.9%	61.0%
2010	2,436	413	2,849	4,524	1,001	5,525	6,960	1,414	8,374	66.0%	60.2%
2011	3,092	926	4,018	3,162	1,404	4,566	6,254	2,330	8,584	53.2%	65.3%
2012	2,359	191	2,550	2,661	265	2,926	5,020	456	5,476	53.4%	65.2%
2013	1,708	678	2,386	1,587	840	2,427	3,295	1,518	4,813	50.4%	66.5%
2014	3,099	685	3,784	2,150	794	2,944	5,249	1,479	6,728	43.8%	69.6%
2015	3,357	163	3,520	1,779	167	1,946	5,136	330	5,466	35.6%	73.7%
2016	2,070	266	2,336	1,198	705	1,903	3,268	971	4,239	44.9%	69.0%
2017	1,135	194	1,329	1,328	660	1,988	2,463	854	3,317	59.9%	62.5%
2018	500	33	533	1,033	233	1,266	1,533	266	1,799	70.4%	58.7%
2019	316	81	397	828	266	1,094	1,144	347	1,491	73.4%	57.7%
2020	497	56	553	746	341	1,087	1,243	397	1,640	66.3%	60.1%
2021	618	184	802	1,190	734	1,924	1,808	918	2,726	70.6%	58.6%
2022	1,575	120	1,695	1,521	333	1,854	3,096	453	3,549	52.2%	65.7%
Mean ³	2,227	314	2,541	2,142	667	2,715	4,039	904	4,943	54.3%	64.5%

^{1.} Proportionate Natural Influence equals Proportion Natural-Origin Brood-stock (PNOB; 1.0 as only NoR fish are used for supplementation line brood-stock) divided by PNOB plus Proportion Hatchery-Origin Spawners (PHOS).

^{2.} This is a rough estimate since Roza counts are not available for 1991.

^{3.} For NoR columns, mean of 1997-present values. For all other columns, mean of 2001-present values.

Both the CESRF integrated and segregated programs have now proceeded for several generations and we can evaluate actual outcomes relative to the hypothetical outcomes given in Figure 26 above. Results were presented in Waters et al. (2015) and empirically demonstrate that using managed gene flow (i.e. using only naturalorigin fish for brood stock) reduced genetic divergence over time in the CESRF integrated (S-line) fish compared to the segregated (HC-line; hatchery-origin parents) fish (Figure 27). The actual results are remarkably consistent with the projected outcomes demonstrating that there is considerable merit to the concepts behind hatchery reform. While some detractors of hatchery supplementation choose to highlight the differences the CESRF program has found between hatchery and natural-origin fish such as those documented in Knudsen et al. (2006 and 2008), it is important to note that integrated hatchery-origin fish were never expected to be identical to wild fish (Figure 26), but rather similar enough to increase demographic abundance of natural spawners while minimizing risk, which is exactly what the results to date for this project demonstrate (Fast et al. 2015; Koch et al. 2022). Additional monitoring is required to understand and fully evaluate biological costs and benefits relative to using this type of management over the long-term (Fraser 2008). The YKFP is continuing its collaboration with University of Washington and NOAA scientists to further evaluate and associate genetic divergence results from Waters et al. (2015) with the phenotypic trait analyses in Knudsen et al. (2006 and 2008).

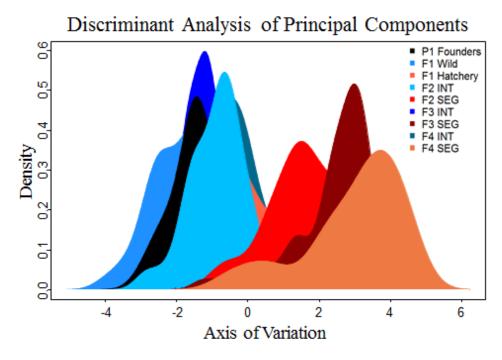


Figure 27. Estimated genetic divergence (variation) for integrated (INT blue), segregated (SEG red), and wild founder (black) spring Chinook in the CESRF program after 4 parental-generations of the hatchery program (P1=1998, F1=2002, F2=2006, F3=2010, F4=2014; updated from Figure 4 in Waters et al. 2015).

Additional information and results from the CESRF program are provided in Appendix B and in Fast et al. (2015).

Predation Management and Predator Control

Avian Predation Index

Avian predators are capable of significantly depressing smolt production. The loss of wild spring Chinook salmon juveniles to various types of avian predators has long been suspected as a significant constraint on production and could limit the success of supplementation. Therefore, a long-standing objective of the YKFP has been to monitor, evaluate, and index the impact of avian predation on annual salmon and steelhead smolt production in the Yakima River basin. Accurate methods of indexing avian predation across years have been developed through river reach surveys (monitoringmethods.org; method 1151) within six reaches which cover approximately 70 miles of collecting point count estimates of piscivorous avian species in the lower portion of the Yakima River (see 2020 BPA annual report). In 2022, additional effort was used to haze and collect observational count data primarily at two known avian hotspots on the Yakima River, Wanawish dam and Chandler fish bypass outfall pipe (Figure 28).

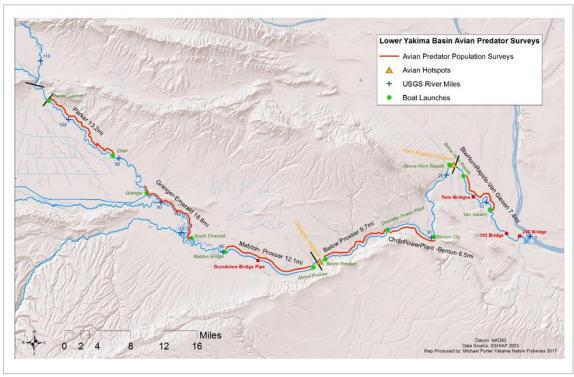


Figure 28. Avian "hotspot" locations and previous year's predator survey locations.

Methods:

In 2022, Yakama Nation staff observed then hazed piscivorous birds at two "hotspot" locations within the Yakima River basin including Chandler fish bypass outfall pipe (Chandler) and Wanawish Dam (Figure 28). Periodic counts were taken at Roza Dam throughout the season, but no hazing was conducted. Staff hazed at Wanawish and Chandler 4-5 days a week from mid-April through June during the smolt outmigration and 1-2 days a week in March, early April, and early July when few birds were in the area. Upon arrival on site, staff observed visually, or with 10x42 Vortex binoculars, piscivorous birds within study zones. Study sites were divided into distinct zones to monitor initial avian location and avian movement post hazing. Common piscivorous birds observed at these sites were: American white pelican, double-crested cormorant and California gull/ring-billed gulls; though many other avian species are observed in the Yakima River (Table 29). Data recorded included: date, site, observer, observer bank, and a total count of birds by species and behavior within each zone prior to hazing. Sex and age of birds were recorded if distinguishable. Next, staff would use various hazing methods in attempt to discourage birds from being in the area, then conduct a count of species within each zone. Hazing and harassment techniques included bangers, screamers, and whistler pyro technics, a green laser, and physical presence. Pyro technics were fired either at a 45° angle over the river or in a safe direction away from wildlife, persons or property. The green laser was flashed on and around the birds and physical presence was simply arriving on site and observing if birds reacted.

Table 29. Yakima River avian predators.

Common Name	Scientific Name	Acronym		
Common Merganser	Mergus merganser	COME		
American White Pelican	Pelecanus erythrorhynchos	AWPE		
California Gull	Larus californicus	GULL		
Ring-billed Gull	Larus delawarensis	GULL		
Belted Kingfisher	Ceryle alcyon	BEKI		
Great Blue Heron	Ardea herodias	GBHE		
Double-crested Cormorant	Phalacrocorax auritus	DCCO		
Black-crowned Night-Heron	Nycticorax nycticorax	ВСНЕ		
Forster's Tern	Sterna forsteri	FOTE		
Great Egret	Ardea alba	GREG		
Hooded Merganser	Lophodytes cucullatus	HOME		
Bald Eagle	Haliaeetus leucocephalus	BAEA		
Osprey	Pandion haliaetus	OSPR		
Caspian Tern	Sterna caspia	CATE		

Hotspots and zones

Wanawish Dam on the Yakima River (rkm 30) is located in Benton County northwest of the town of West Richland. This dam was built to divert water for irrigation and spans over 150m wide with a 1-2m drop from the forebay to the spillway depending on flows conditions. In this study, Wanawish Dam study area was divided into six distinct zones and determined by orientation to the dam (Figure 29). Forebay 1 (FB1) was the zone 0-100 m upstream of the dam left bank to right bank. Forebay 2 (FB2) was the zone 100-200 m upstream of the dam from left bank to right bank. Spillway 1 LB (SW1 LB) was the zone 0-100 m downstream of the dam from center channel to left bank. Spillway 1 RB (SW1 RB) was the zone 0-100 m downstream of the dam from center channel to right bank. Spillway 2 (SW2) was the zone 100-460 m downstream of the dam from left bank to right bank. Any birds seen, but not listed in one of the above zones was recorded as outside the survey area (OSA).

Figure 29. Wanawish Dam hotspot zones.

Another significant avian hotspot is near Prosser Dam located on the Yakima River (rkm 74) in Yakima County, in the city of Prosser, and diverts water for irrigation. Fish moving downstream either navigate over the dam or are diverted down the Chandler canal into a juvenile fish monitoring facility, sampled on site, and released back into the river through a large 1m diameter pipe which spills into the river. The Chandler study area was divided into six distinct zones and determined by orientation to the juvenile outfall pipe (Figure 30). Above pipe 1 (AP1) was the zone 0-100 m upstream of the outfall pipe from left bank to right bank. Above pipe 2 (AP2) was the

zone 100-200 m upstream of the outfall pipe from left bank to right bank. Below pipe 1 LB (BP1 LB) was the zone 0-100 m downstream of the outfall pipe from center channel to left bank; the outflow pipe spills into this zone. Below pipe 1 RB (BP1 RB) was the zone 0-100 m downstream of the outfall pipe from center channel to right bank. Below pipe 2 (BP2) was the zone 100-500 m downstream of the outfall pipe from left bank to right bank. Any birds seen, but not listed in one of the above zones was recorded as outside the survey area (OSA).

Figure 30. Chandler hotspot zones. Circle represents juvenile bypass outfall pipe.

In the upper Yakima River, there is another notable avian hotspot at Roza Dam. It is located on the Yakima River (rkm 206) in Kittitas County 16 km north of Yakima. The dam is 20 m tall and nearly 150 m wide and was built to divert water for irrigation and generate electricity. The Roza Dam study area was divided into three distinct zones and determined by orientation to the dam (Figure 31). Above dam (AD) was the zone 0-275 m upstream of the dam to the tip of the island from left bank to right bank. Below dam (BD) was the zone 0-200 m downstream of the dam to the train bridge from left bank to right back. Any birds seen, but not listed in one of the above zones was recorded as outside the survey area (OSA).

Figure 31. Roza dam hotspot zones.

Relationship between river flow and avian predation

Following the fish survey in the hotspot, we conducted additional investigations to ascertain whether the increased presence of avian predators in this area was linked to the river's flow. To do this, we acquired the daily river flow data for the Yakima River and the corresponding daily total avian predator counts, then analyzed their linear relationship.

Results and Discussion:

Avian distribution

With greater than 55 days sampling at each site from March 16 through July 20th 2022, a total of 2284 piscivorous avian species were observed and hazed at Yakima basin hotspots. Among them, 1484 birds were observed at Wanawish while 800 were observed at Chandler (Table 30). The most dominant species observed in both locations was the American White Pelican with 1263 and 531 respectively. Throughout the study period in 2022, the daily peak count at Wanawish, Chandler and Roza were 58, 44, and 40, respectively (Figure 32). Other species also present, but in smaller numbers at Chandler include: California Gull, Common Merganser, Double-crested Cormorant, Great Blue Heron, Bald Eagle, Black-crowned Night Heron, and Belted Kingfisher. Species at Wanawish in small numbers included all

species seen at Chandler except the Bald Eagle, Black-crowned Night Heron, and Belted Kingfisher. Peak observations of piscivorous avian species at Wanawish and Chandler were in the month of May where 52% and 42% of the total were seen throughout the study period (Table 31).

Table 30. Total piscivorous avian species observed at Chandler juvenile bypass and Wanawish Dam.

Area	AWPE	BAEA	ВСНЕ	BEKI	CATE	COME	DCCO	GBHE	GREG	GULL	OSPR	Total
Chandler Pipe	531	1	10	18	1	101	84	45	1	8	0	800
Wanawish	1263	0	0	0	7	11	75	10	1	116	1	1484
Total	1794	1	10	18	8	112	159	55	2	124	1	2284

Table 31. Total monthly piscivorous avian species observed at Chandler juvenile bypass and Wanawish Dam.

Area	MONTH	AWPE	BAEA	BCHE	BEKI	CATE	COME	DCCO	GBHE	GREG	GULL	OSPR	total	%
Chandler Pipe	March	0	0	0	0	0	0	3	0	0	0	0	3	0.38
Chandler Pipe	April	56	0	2	4	0	87	29	4	0	4	0	186	23.25
Chandler Pipe	May	343	0	7	8	0	13	13	31	1	1	0	417	52.13
Chandler Pipe	June	64	0	1	6	0	0	10	8	0	2	0	91	11.38
Chandler Pipe	July	68	1	0	0	1	1	29	2	0	1	0	103	12.88
Total													800	
Wanawish	March	0				0	0	1	0	0	0	0	1	0.07
Wanawish	April	389				0	2	31	3	1	23	1	450	30.32
Wanawish	May	576				0	1	5	1	0	43	0	626	42.18
Wanawish	June	232				3	0	20	1	0	11	0	267	17.99
Wanawish	July	66				4	8	18	5	0	39	0	140	9.43
Total													1484	

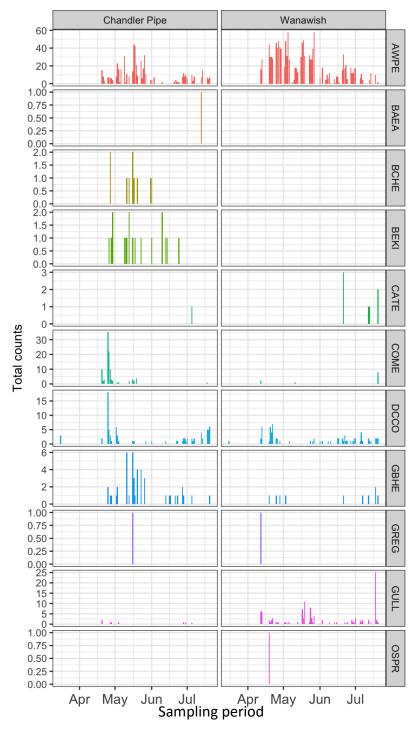


Figure 32. Daily bird count in the sampling period in both sampling areas.

Relationship between bird counts and river flow

The overall bird counts varied between 0 and 60, while the river flow spanned from approximately 500 to 15,200 cfs. Notably, higher bird counts were observed when the

river flow was within a moderate range, specifically, they tended to be higher when the river flow was below 7500 cfs in both areas (Figure 33).

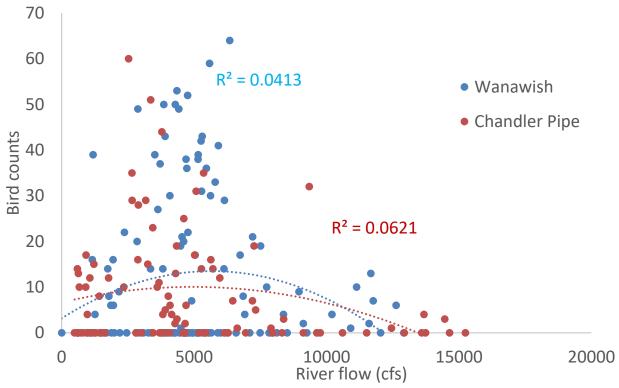


Figure 33. Relationship between river flow and avian species observed at study sites.

Fish Predation Index and Predator Control

Fish predators are also identified as a significant factor contributing to the decline in smolt production. Thus the YKFP has a long-established objective to monitor, evaluate, and manage the impact of piscivorous fish on annual smolt production of Yakima River basin salmon and steelhead. By indexing the mortality rate of upper Yakima spring Chinook attributable to piscivorous fish in the lower Yakima River, the contribution of in-basin predation to variations in hatchery- and natural-origin spring Chinook smolt-to-adult survival rate can be deduced.

Based on YKFP and WDFW studies of piscivorous fish in the Yakima River Basin (Fritts and Pearsons 2004, 2006, 2008), it was determined that management of the piscivorous fish populations in the area is necessary to improve survival of juvenile salmonids. Initial steps were taken in 2009 to identify locations that would be suitable for a multi-pass removal population study. In early 2010, the YKFP began initial study checks to determine management and study goals for piscivorous fish. Presence and absence of piscivorous fish was determined through electro-fishing various sections of the Yakima River to determine temporal and spatial trends of each species of

piscivorous fish. On March 1, 2013, the Washington Fish and Wildlife Commission adopted numerous changes to sport fishing rules, including the elimination of catch restrictions for non-native predators.

Methods:

In previous years, Yakama Nation conducted surveys in six river reaches (Figure 34), encompassing approximately 50 miles of the lower Yakima River. Among these reaches, Below Prosser and lower Yakima (Snively) were notable for having the highest abundance of piscivorous fish. Consequently, in 2022 our survey efforts were focused to those specific reaches. Staff utilized jet boat and raft-based electrofishing through time to assess the spatial and temporal variations in fish abundance and distribution within these reaches. Additionally, sampling was conducted just above the Yakima River delta (above delta) and the east and west causeway of Bateman Island near the confluence at the Columbia River, however the above delta reach was not included in further analysis due to the small sample size. Each reach had two transects, or segments within each reach, and reaches were determined by dams, boat launches, or other distinguishing river features.

Sampling was conducted continuously along river margins when possible. As river stage changes, limiting access to areas within survey segments, continuous electrofishing was not always possible. The start and endpoints of shocker operation within the segment at low river stages was marked, resulting in discontinuous, marked subsegments of electrofisher operation within each survey area.

Data collected during each sampling event consisted of:

- Water Temperature, Dissolved Oxygen, Specific Conductivity gathered by a HACH 30qd water multi-meter
- Water Turbidity gathered by a HACH TSS Handheld Instrument
- River CFS gathered from Bureau of Reclamation gaging stations
- GPS transect start and end locations
- Electrode start and end times
- Numbers and species (Table 32) of all fish observed and their size class greater than or less than 100mm

At the start of each sampling event a small group of fish were caught and examined to insure that electro-fishing settings were not causing visible injuries. To further insure injuries to fish were minimized, sampling procedures by the National Marine Fisheries Service, "Guidelines for Electrofishing Waters Containing Salmonids Listed under the Endangered Species Act," were followed.

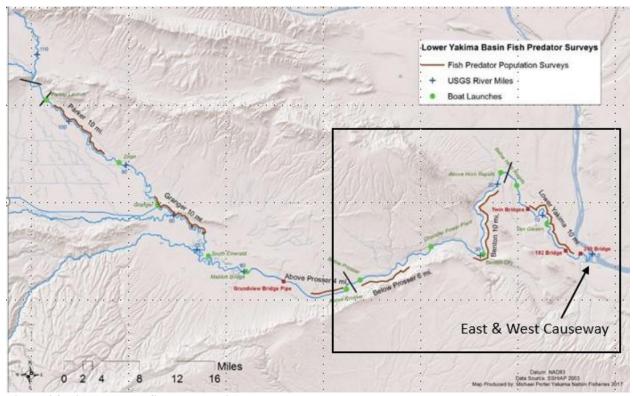


Figure 34. Fish Predator Survey Locations.

Beginning April 19th, crews sampled weekly as environmental conditions permitted until July 5th (Fish Predators Schei, monitoring methods 47 and Predator Reduction Mclellan, monitoring methods 438). Sampling was conducted using three different types of vessels and electrofishers. The Smith Root SR-16H electrofishing boat equipped with the 7.5 GPP electrofishing unit powered by a 6,000-W Kohler boat generator or a 16-foot aluminum jet boat equipped with a Smith Root VVP-15B electrofisher powered by a Honda EM3500S generator were used in the Snively reach, east causeway and west causeway reaches. Within the reach below Prosser, sampling was conducted with a 12-foot raft equipped with a Smith Root 1.5-KVA electrofisher powered by Honda EU2200i generator. Electrofishing settings were adjusted to continuous DC for an output of approximately 700 V and 9–12 A. These methods will be used to monitor native and nonnative species fish populations and abundance in the Yakima River.

Table 32. Yakima River Fish Species (Note: spring Chinook and Coho total counts are combined in results and listed as spring Chinook).

Family	Common Name	Scientific Name	Acronym
Salmonidae:			
	Steelhead/Rainbow trout	Oncorhynchus mykiss	STH
	Coho Salmon	Oncorhynchus kisutch	COHO*
	Chinook Salmon	Oncorhynchus tshawytscha	SPCK/FACK*
	Mountain Whitefish	Prosopium williamsoni	WT
Cyprinidae:			
	Chiselmouth	Acrocheilus alutaceus	CH
	Carp	Cyprinus carpio	CP
	Peamouth	Mylocheilus caurinus	PEA
	Speckled Dace	Rhinichthys osculus	SPDA
	Northern Pikeminnow	Ptychocheilus oregonensis	NPM
	Redside Shiner	Richardsonius balteatus	SH
Catostomidae:			
	Sucker	Catostomus columbianus	SK
		Catostomus catostomus	
Ictaluridae:			
	Brown Bullhead	Ameiurus nebulosus	BRCT
	Channel Catfish	Ictalurus punctatus	CHCT
Centrarchidae:			
	Pumpkin Seed	Lepomis gibbosus	PKSC
	Blue Gill	Lepomis macrochirus	BG
	Smallmouth Bass	Micropterus dolomieui	SMB
	Large Mouth Bass	Micropterus salmoides	LMB
	Black Crappie	Pomoxis nigromaculatus	CRAP
Percidae:			
	Walleye	Stizostedion vitreum vitreum	WALLEYE
	Yellow Perch	Perca flavescens	YP
Cottidae:			
	Sculpin	Cottus bairdi	SC
Clupeidae:			
	Shad	Alosa sapidissima	SHAD

Results and Discussion:

During the sampling period in 2022, the below Prosser and Snively reaches were each sampled a minimum of 14 times and the west and east causeway were each sampled 5 and 3 times respectively. A total of 27 species were observed, including 9 fish predator species. The species with the highest density was spring chinook (4,510) followed by Smallmouth Bass (2,768). Considering the significant number of salmonid species naturally produced and those released by Yakama Nation Fisheries (spring Chinook, summer Chinook, fall Chinook, Coho, and Sockeye), there is reasonable concern of piscivorous fish predation impacts on anadromous salmonids. We expected to observe higher densities of salmonid species compared to predator species, however

the presence of predator fish species such as Smallmouth Bass and Northern Pikeminnow were seen in high densities (Figure 35).

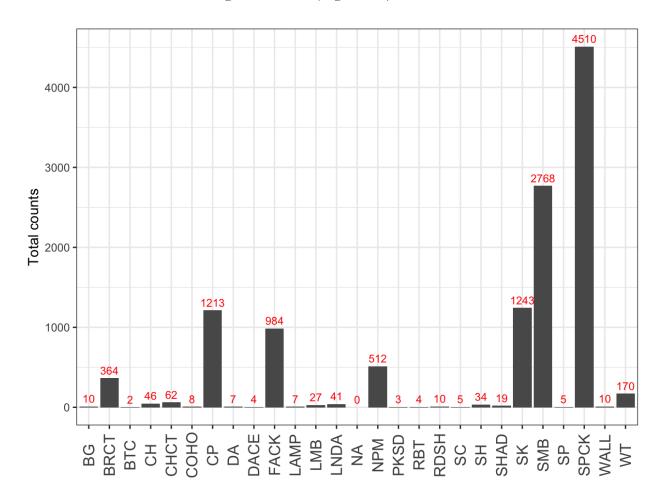


Figure 35. Species abundance in 2022. Values displayed represent total abundance of each species.

When comparing predator-prey densities in the Yakima River by reach (Figure 36), we consistently found high densities of Smallmouth Bass in all four sampling areas while the Spring Chinook were concentrated in three of the four (below Prosser, Snively, and west causeway. The Snively and west causeway reaches saw densities of fish predator species higher that of salmonid species. For example, in the Snively reach the total abundance of SMB was 1,265, whereas the abundance of spring chinook was only 554. Below Prosser, the abundance of SMB (1,370) was lower than the total abundance of spring chinook (3,878), but still indicates significant predation pressure on the salmonid species.

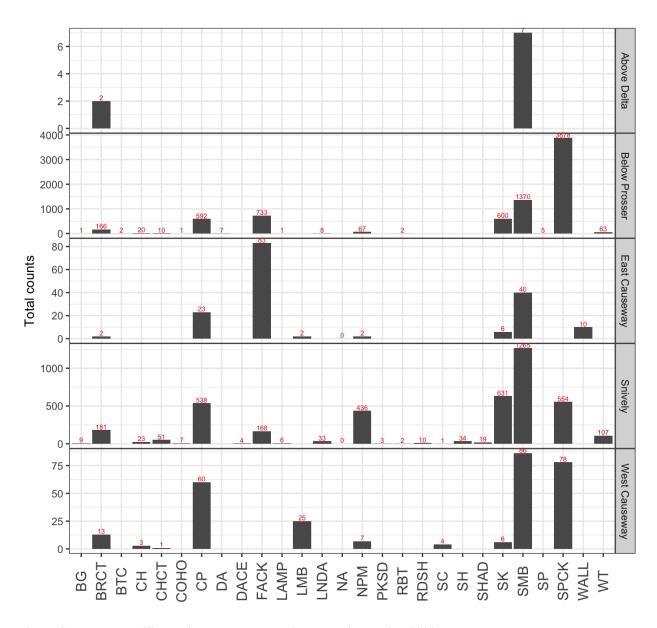


Figure 36. Reach specific species abundance during sampling period 2022.

Throughout the spring sampling period until early July, fish predator species were observed consistently in the Yakima River basin (Figure 37), with a higher presence observed as the season progressed. These findings of consistent piscivorous fish presence during the smolt migration highlight the importance of understanding and managing predator-prey dynamics in the Yakima River basin to ensure the successful survival of salmonid species. Further analysis and consideration of these predator-prey interactions are necessary for effective conservation and management strategies.

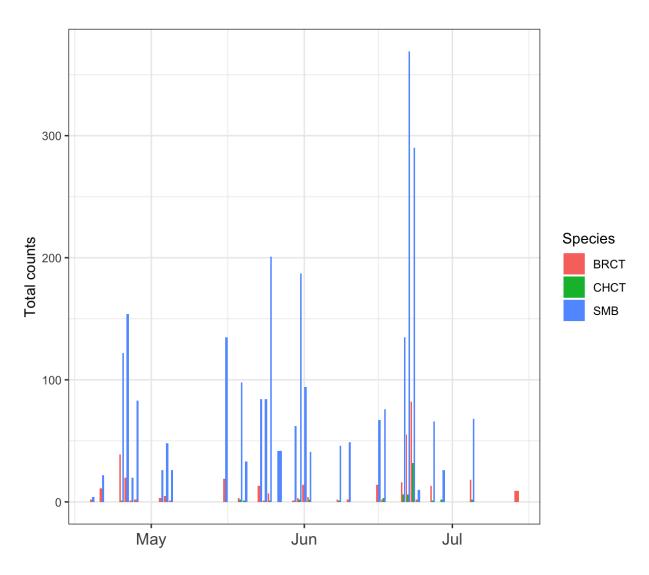


Figure 37. Total abundance of primary predatory fish species observed by the sampling date.

Adaptive Management and Lessons Learned

As noted extensively throughout this report, this project is a collaborative effort involving many agencies, boards, and individuals. As such, project coordination and review of project standards and protocols occurs continually amongst tribal, state, federal, and local entities during normal day-to-day operations of the project. Project results are communicated broadly through the annual <u>science and management conference</u>, technical reports and peer-reviewed journal publications (see references and project-related publications), and via several related web sites described in Appendix A.

We support the principles established in Mobrand et al. (2005) and Paquet et al. (2011) that hatchery programs should be well-defined, scientifically defensible, and

use informed decision making tools including adaptive management. Many of these principles were initially published in Cuenco et al. (1993) including specific recommended decision criteria, management protocols, release strategies, and risk management strategies for hatchery programs. We designed a number of these protocols and strategies into the CESRF program and they are clearly contributing to the results documented here for the Upper Yakima River Basin spring Chinook populations.

Results to date from Yakama Nation supplementation and research efforts in the Yakima River Basin indicate several lessons that may be of broader application on the regional scale.

- 1. We need to be realistic. Can or should we expect to see "self-sustaining natural populations" in river systems that have been highly altered from their historical state due to ever-increasing human demands on shared resources? In the highly altered systems we live and work in today, hatchery programs provide a necessary means to ameliorate some of the effects of human population growth and development.
- 2. We need to be honest. Hatchery programs are not the cause of poor productivity. The historical record is replete with documentation (Cone and Ridlington 1996) that the region knew exactly what it was doing to natural salmon productivity when settlement and development of the region began to increase, even as early as the middle 1800s.
- 3. We need to be patient. Hatchery reform is a relatively new concept and results for longer term 20-25 year efforts such as the Idaho Supplementation Studies (ISS; Venditti et al. 2017) and CESRF program (Fast et al. 2015) are only now becoming available. These programs empirically support the idea that hatchery reform principles can provide additional fish to fisheries and improve fitness over traditional hatchery rearing concepts.
- 4. While hatchery supplementation has demonstrated increases in natural production (increased redd and juvenile abundance), supplementation by itself cannot and was never intended to increase natural productivity. To accommodate expanding human population growth and resource demand, it is imperative that we continue and even increase habitat restoration actions to ensure that sufficient spawning and rearing habitat remains available to all naturally spawning fish.
- 5. Every subbasin, species, and study is unique, so we should not be surprised to see differing results from the many studies of hatchery effects that are ongoing.

- Researchers need to continue efforts to better understand the root causes of poor natural productivity and the extent to which hatchery programs effect productivity.
- 6. Evaluation of hatchery programs should include evaluation of environmental and other factors so that hatchery effects are properly reported.
- 7. Hatchery programs should be regularly evaluated at the local level using expertise across disciplines to collaboratively and iteratively develop appropriate solutions that address the unique problems and limiting factors encountered in each subbasin or tributary that hosts a hatchery program. In the Yakima Basin, this is achieved with the annual Yakima Basin Aquatic Science and Management Conference, and we use the results to evaluate existing goals, objectives, and strategies and to adaptively manage projects in response to new information.
- 8. Finally, we concur with the ISRP (ISRP 2022-1) that there are "implications of flat funding on projects being able to implement their proposed actions". The Yakama Nation will prioritize available funding to implement actions that have the best potential for improving fish survival and returning fish to fisheries and to spawning grounds. While we fully intend to continue our monitoring and evaluation efforts to inform future actions, limited funding will limit our future ability to report on actions to the extent we have in this report in prior years.

References and Project-related Publications

- Beckman, B.R., D.A. Larsen, B. Lee-Pawlak, and W.W. Dickhoff. 1998. Relation of Fish Size and Growth Rate to Migration of Spring Chinook Salmon Smolts. North American Journal of Fisheries Management 18:537-546.
- Beckman, B.R., D.A. Larsen, C. Sharpe, B. Lee-Pawlak, C.B. Schreck, and W.W. Dickhoff. 2000. Physiological Status of Naturally Reared Juvenile Spring Chinook Salmon in the Yakima River: Seasonal Dynamics and Changes Associated with Smolting. Transactions of the American Fisheries Society 129:727-753.
- Beckman, B.R. and D.A. Larsen. 2005. Upstream Migration of Minijack (Age-2) Chinook Salmon in the Columbia River: Behavior, Abundance, Distribution, and Origin. Transactions of the American Fisheries Society 134:1520-1541.
- Beckman, B.R., B. Gadberry, P. Parkins, and D.A. Larsen. 2008. The Effect of Yakima River Spring Chinook Salmon Sire Life History Type on Emergence Timing and Size of Progeny. Transactions of the American Fisheries Society 137:1285-1291.

- Bosch, W.J. 2004. The promise of hatchery-reared fish and hatchery methodologies as tools for rebuilding Columbia Basin salmon runs: Yakima Basin overview. American Fisheries Society Symposium 44:151-160.
- Bosch, W.J., T.H. Newsome, J.L. Dunnigan, J.D. Hubble, D. Neeley, D.T. Lind, D.E. Fast, L.L. Lamebull, and J.W. Blodgett. 2007. Evaluating the Feasibility of Reestablishing a Coho Salmon Population in the Yakima River, Washington. North American Journal of Fisheries Management 27:198-214.
- Bosch, W. J., S. N. Pandit, B. P. Sandford, G. M. Temple, M. V. Johnston, and D. A. Larsen. 2023. Effects of volitional emigration timing and smolt size on survival and age-at-return in a Pacific Salmon hatchery population. Environmental Biology of Fishes 106:1037-1059 https://doi.org/10.1007/s10641-023-01395-0.
- BPA (Bonneville Power Administration). 1996. Yakima Fisheries Project. Final Environmental Impact Statement. Bonneville Power Administration. Washington Department of Fish and Wildlife. Yakama Indian Nation. January, 1996. DOE/EIS-0169. DOE/BP-2784. Portland, OR.
- Busack, C., T. Pearsons, C. Knudsen, S. Phelps, Washington Department of Fish and Wildlife, B. Watson, M. Johnston, Yakama Nation, U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife. 1997. Yakima Fisheries Project spring Chinook supplementation monitoring plan. Project Number 195-065, Contract Number DE-BI79-1996 BPA64878. https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=64878-1
- Busack, C. and C.M. Knudsen. 2007. Using factorial mating designs to increase the effective number of breeders in fish hatcheries. Aquaculture 273:24-32.
- Busack, C., C.M. Knudsen, G. Hart, and P. Huffman. 2007. Morphological Differences Between Adult Wild and First-Generation Hatchery Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society 136:1076-1087.
- Busack, C, P. Hulett, T. Pearsons, J. Tipping and J. B. Scott, Jr. 2008. Chapter 4 Artificial production. in J. B. Scott, Jr. and W. T. Gill, editors. *Oncorhynchus mykiss*: Assessment of Washington State's Steelhead populations and programs. Washington Department of Fish and Wildlife, Olympia, Washington. (https://wdfw.wa.gov/publications/00150/wdfw00150.pdf).
- Chapman, D., and eight co-authors. 1994. Status of summer/fall Chinook salmon in the Mid-Columbia Region. Don Chapman Consultants, Boise, ID. 412 pp.
- Clune, T. and D. Dauble. 1991. The Yakima/Klickitat Fisheries Project: A Strategy for Supplementation of Anadromous Salmonids. Fisheries 16: 28-34.
- Cone, J. and S. Ridlington (eds.). 1996. The Northwest Salmon Crisis: A Documentary History. Oregon State University Press, Corvallis, OR.

- CRITFC (Columbia River Inter-Tribal Fish Commission). 1995. Wy-Kan-Ush-Mi Wa-Ksih-Wit (Spirit of the Salmon). Columbia River Anadromous Fish Restoration Plan of the Nez Perce, Umatilla, Warm Springs and Yakama Tribes. Portland, OR.
- Cuenco, M.L., T.W.H. Backman, and P.R. Mundy. 1993. The use of supplementation to aid in natural stock restoration. Pages 269-293 in J.G. Cloud and G.H. Thorgaard, editors. Genetic conservation of salmonid fishes. Plenum Press, New York.
- Currens, K.P., and C.A. Busack. 1995. A framework for assessing genetic vulnerability. Fisheries 20:24-31.
- Dittman, A.H., D. May, D.A. Larsen, M.L. Moser, M. Johnston, and D. Fast. 2010. Homing and spawning site selection by supplemented hatchery- and natural-origin Yakima River spring Chinook salmon. Transactions of the American Fisheries Society 139:1014-1028.
- Evans, A.F. and N.J. Hostetter. 2012. Systemwide evaluation of avian predation on juvenile salmonids from the Columbia River based on recoveries of Passive Integrated Transponder tags. Transactions of the American Fisheries Society 141:975-989.
- Fast, D.E., D. Neeley, D.T. Lind, M.V. Johnston, C.R. Strom, W.J. Bosch, C.M. Knudsen, S.L. Schroder, and B.D. Watson. 2008. Survival Comparison of Spring Chinook Salmon Reared in a Production Hatchery under Optimum Conventional and Seminatural Conditions. Transactions of the American Fisheries Society 137:1507–1518.
- Fast, D.E., W.J. Bosch, M.V. Johnston, C.R. Strom, C.M. Knudsen, A.L. Fritts, G.M. Temple, T.N. Pearsons, D.A. Larsen, A.H. Dittman, and D. May. 2015. A Synthesis of Findings from an Integrated Hatchery Program after Three Generations of Spawning in the Natural Environment. North American Journal of Aquaculture 77:377-395.
- Fiander, W., D.E. Fast, and W.J. Bosch (editors). 2019. Yakima-Klickitat Fisheries Project Monitoring and Evaluation Yakima Subbasin, <u>Final Report for the performance period May/2018-April/2019</u>, Project number 1995-063-25, 275 electronic pages.
- Fraser, D. J. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evolutionary Applications, 1:535-586.
- Fritts, A.L., and T.N. Pearsons. 2004. Smallmouth bass predation on hatchery and wild salmonids in the Yakima River, Washington. Transactions of the American Fisheries Society 133:880-895.

- Fritts, A.L. and T.N. Pearsons. 2006. Effects of Predation by Nonnative Smallmouth Bass on Native Salmonid Prey: the Role of Predator and Prey Size. Transactions of the American Fisheries Society 135:853-860.
- Fritts, A.L., J.L. Scott, and T.N. Pearsons. 2007. The effects of domestication on the relative vulnerability of hatchery and wild spring Chinook salmon to predation. Canadian Journal of Fisheries and Aquatic Sciences 64:813-818.
- Fritts, A.L., and T.N. Pearsons. 2008. Can nonnative smallmouth bass, *Micropterus dolomieu*, be swamped by hatchery fish releases to increase juvenile Chinook salmon, *Oncorhynchus tshawytscha*, survival? Environmental Biology of Fishes 83:485–494.
- Greene, C.H., B.A. Block, D. Welch, G. Jackson, G.L. Lawson, E.L. Rechisky. 2009. Advances in conservation oceanography: New tagging and tracking technologies and their potential for transforming the science underlying fisheries management. Oceanography. Vol. 22, no. 1, pp 210-223.
- Ham, K.D., and T.N. Pearsons. 2000. Can reduced salmonid population abundance be detected in time to limit management impacts? Canadian Journal of Fisheries and Aquatic Sciences 57:17-24.
- Ham, K.D., and T.N. Pearsons. 2001. A practical approach for containing ecological risks associated with fish stocking programs. Fisheries 25(4):15-23.
- Hiebert, S., L.A. Helfrich, D.L. Weigmann, and C. Liston. 2000. Anadromous Salmonid Passage and Video Image Quality under Infrared and Visible Light at Prosser Dam, Yakima River, Washington. North American Journal of Fisheries Management 20:827-832.
- Hubble J., T. Newsome, and J. Woodward. 2004. <u>Yakima Coho Master Plan</u>. Prepared by Yakama Nation in cooperation with Washington State Department of Fish and Wildlife. September 2004. Yakima Klickitat Fisheries Project, Toppenish, WA.
- Independent Scientific Advisory Board (ISAB). 2015. Density Dependence and its Implications for Fish Management and Restoration Programs in the Columbia River Basin. Northwest Power and Conservation Council, Portland, OR. Available at: http://www.nwcouncil.org/media/7148891/isab2015-1.pdf.
- Independent Scientific Review Panel (ISRP). 2011. Retrospective Report 2011. Northwest Power and Conservation Council, Portland, OR. Available at: http://www.nwcouncil.org/library/isrp/isrp2011-25.pdf.
- Johnson, C.L., G.M. Temple, T.N. Pearsons, and T.D. Webster. 2009. An Evaluation of Data Entry Error and Proofing Methods for Fisheries Data. Transactions of the American Fisheries Society 138:593-601.

- Kiffney, P.M., E.R. Buhle, S.M. Naman, G.R. Pess, and R.S. Klett. 2014. Linking resource availability and habitat structure to stream organisms: an experimental and observational assessment. Ecosphere, 5(4):39. Available at: http://www.esajournals.org/doi/pdf/10.1890/ES13-00269.1.
- Knudsen, C.M., S.L. Schroder, C.A. Busack, M.V. Johnston, T.N. Pearsons, W.J. Bosch, and D.E. Fast. 2006. Comparison of Life History Traits between First-Generation Hatchery and Wild Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society 135:1130–1144.
- Knudsen, C.M., S.L. Schroder, C. Busack, M.V. Johnston, T.N. Pearsons, and C.R. Strom. 2008. Comparison of Female Reproductive Traits and Progeny of First-Generation Hatchery and Wild Upper Yakima River Spring Chinook Salmon. Transactions of the American Fisheries Society 137:1433-1445.
- Knudsen, C.M., M.V. Johnston, S.L. Schroder, W.J. Bosch, D.E. Fast, and C.R. Strom. 2009. Effects of passive integrated transponder tags on smolt-to-adult recruit survival, growth, and behavior of hatchery spring Chinook salmon. North American Journal of Fisheries Management 29:658-669.
- Koch, I. J., T. R. Seamons, P. F. Galbreath, H. M. Nuetzel, A. P. Matala, K. I. Warheit, D. E. Fast, M. V. Johnston, C. R. Strom, S. R. Narum, and W. J. Bosch. 2022. Effects of Supplementation in Upper Yakima River Chinook Salmon. Transactions of the American Fisheries Society 151:373-388. https://doi.org/10.1002/tafs.10354
- Larsen, D.A., B.R. Beckman, K.A. Cooper, D. Barrett, M. Johnston, P. Swanson, and W.W. Dickhoff. 2004. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program. Transactions of the American Fisheries Society 133:98-120.
- Larsen, D.A., B.R. Beckman, C.R. Strom, P.J. Parkins, K.A. Cooper, D.E. Fast, and W.W. Dickhoff. 2006. Growth Modulation Alters the Incidence of Early Male Maturation and Physiological Development of Hatchery-Reared Spring Chinook Salmon: A Comparison with Wild Fish. Transactions of the American Fisheries Society 135:1017-1032.
- Larsen, D.A., B.R. Beckman, and K.A. Cooper. 2010. Examining the Conflict between Smolting and Precocious Male Maturation in Spring (Stream-Type) Chinook Salmon. Transactions of the American Fisheries Society 139:564-578.
- Larsen, D.A., D.L. Harstad, C.R. Strom, M.V. Johnston, C.M. Knudsen, D.E. Fast, T.N. Pearsons, and B.R. Beckman. 2013. Early Life History Variation in Hatcheryand Natural-Origin Spring Chinook Salmon in the Yakima River, Washington. Transactions of the American Fisheries Society 142:2, 540-555.

- Larsen, D. A., D. L. Harstad, A. E. Fuhrman, C. M. Knudsen, S. L. Schroder, W. J. Bosch, P. F. Galbreath, D. E. Fast, and B. R. Beckman. 2019. Maintaining a wild phenotype in a conservation hatchery program for Chinook Salmon: The effect of managed breeding on early male maturation. Plos One https://doi.org/10.1371/journal.pone.0216168.
- Lichatowich, J., L. Mobrand, L. Lestelle, and T. Vogel. 1995. An approach to the diagnosis and treatment of depleted Pacific Salmon populations in Pacific Northwest watersheds. Fisheries 20:10-18.
- Lichatowich, J.A. 1999. Salmon Without Rivers: A History of the Pacific Salmon Crisis. Washington D.C. Island Press.
- Loeffel, R. E., and H. O. Wendler. 1968. Review of the Pacific coast chinook and coho salmon resources with special emphasis on the troll fishery. Prepared by the U.S. working group of the Informal Committee on Chinook and Coho, 107 p. (Available from Oregon Department of Fish and Wildlife, P.O. Box 59, Portland, OR 97207.)
- Major, W.W. III, J.M. Grassley, K.E. Ryding, C.E. Grue, T.N. Pearsons, D.A. Tipton, and A.E. Stephenson. 2005. Abundance and consumption of fish by California gulls and ring-billed gulls at water and fish management structures within the Yakima River, Washington. Waterbirds 28:366-377.
- Martin, S.W., J.A. Long, and T.N. Pearsons. 1995. Comparison of survival, gonad development, and growth between rainbow trout with and without surgically implanted dummy radio transmitters. North American Journal of Fisheries Management 15:494-498.
- McCann, J., B. Chockley, E. Cooper, G. Scheer, S. Haeseker, B. Lessard, T. Copeland, J. Ebel, A. Storch, and D. Rawding. 2022. <u>Comparative Survival Study</u> of PIT-tagged Spring/Summer/Fall Chinook, Summer Steelhead, and Sockeye 2022 Draft Annual Report (BPA Project #19960200). Fish Passage Center, Portland, Oregon.
- McElhany, P., M. H. Ruckelhaus, M. J. Ford, T. C. Wainwright and E. P. Bjorkstedt. 2000. Viable salmonid populations and the recovery of evolutionarily significant units. U. S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-42, 156 pp. Available at: http://docs.lib.noaa.gov/noaa_documents/NMFS/NWFSC/TM_NMFS_NWFSC/TM_NMFS_NWFSC_42.pdf
- McMichael, G.A. 1993. Examination of electrofishing injury and short-term mortality in hatchery rainbow trout. North American Journal of Fisheries Management 13:229-233.
- McMichael, G.A., C.S. Sharpe, and T.N. Pearsons. 1997. Effects of residual hatchery-reared steelhead on growth of wild rainbow trout and spring chinook salmon. Transactions of the American Fisheries Society 126:230-239.

- McMichael, G.A., and T.N. Pearsons. 1998. Effects of wild juvenile spring chinook salmon on growth and abundance of wild rainbow trout. Transactions of the American Fisheries Society 127:261-274.
- McMichael, G.A., A.L. Fritts, and T.N. Pearsons. 1998. Electrofishing injury to stream salmonids: injury assessment at the sample, reach, and stream scales. North American Journal of Fisheries Management 18:894-904.
- McMichael, G.A., T.N. Pearsons, and S.A. Leider. 1999. Behavioral interactions among hatchery-reared steelhead smolts and wild *Oncorhynchus mykiss* in natural streams. North American Journal of Fisheries Management 19:948-956.
- McMichael, G.A., T.N. Pearsons, and S.A. Leider. 1999. Minimizing ecological impacts of hatchery-reared juvenile steelhead trout on wild salmonids in a Yakima Basin watershed. Pages 365-380 in E.E. Knudson, C.R. Steward, D.D. MacDonald, J.E. Williams, and D.W. Reiser editors. Sustainable fisheries management: Pacific salmon. CRC Press, Boca Raton, FL.
- McMichael, G.A. and T.N. Pearsons. 2001. Upstream movement of residual hatchery steelhead into areas containing bull trout and cutthroat trout. North American Journal of Fisheries Management 21:517-520.
- Milbrink, G., T. Vrede, L.J. Tranvik, and E. Rydin. 2011. Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs. Canadian Journal of Fisheries and Aquatic Sciences, 68:2167-2173.
- Mobrand, L.E., J. Barr, L. Blankenship, D.E. Campton, T.T.P. Evelyn, T.A. Flagg, C.V.W. Mahnken, L.W. Seeb, P.R. Seidel, and W.W. Smoker. 2005. Hatchery Reform in Washington State: Principles and Emerging Issues. Fisheries 30:11-23.
- Murdoch, A.R., P.W. James, and T.N. Pearsons. 2005. Interactions between rainbow trout and bridgelip suckers spawning in a small Washington stream. Northwest Science 79: 120-130.
- Neeley, D. 2010. 2009 Annual Report: Chandler Certification for Yearling Outmigrating Spring Chinook Smolt. Appendix D in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2009 through April 30, 2010. Yakama Fisheries, Toppenish, WA.
- Neeley, D. 2012a. Prosser-Passage Estimation Issues. Appendix F in Sampson, Fast, and Bosch, <u>Yakima/Klickitat Fisheries Project Monitoring and Evaluation</u>, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.
- Neeley, D. 2012b. 2011 Annual Report: Smolt-to-smolt survival to McNary Dam of Yakima fall and summer Chinook. Appendix G in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for

- the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.
- Nehlsen, W., J. E. Williams, and J. A. Lichatowich. 1991. Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington. Fisheries 16(2):4-21.
- NMFS. 1999a. Endangered Species Act Section 7 Consultation Supplemental Biological Opinion and Incidental Take Statement. The Pacific Coast Salmon Plan and Amendment 13 to the Plan. NMFS, Protected Resources Division. April 28, 1999. 39 pp. + attachment.
- NMFS. 1999b. Endangered Species Act Reinitiation of Section 7 Consultation Biological Opinion and Incidental Take Statement. The Fishery Management Plan for Commercial and Recreational Fisheries off the Coasts of Washington, Oregon, and California of the Pacific Fishery Management Council. NMFS. Sustainable Fisheries Division. April 30, 1999. 46 pp.
- NMFS 1999c. Endangered Species Act Reinitiated Section 7 Consultation Approval of the Pacific Salmon Treaty by the U.S. Department of State and Management of the Southeast Alaska Salmon Fisheries Subject to the Pacific Salmon Treaty. NMFS, Protected Resources Division. November 9, 1999. 90 p. + figures.
- NMFS. 1999d. Endangered and threatened species; threatened status for three Chinook salmon Evolutionarily Significant Units (ESUs) in Washington and Oregon, and endangered status for one Chinook salmon ESU in Washington. Federal Register 64: 56 (March 24, 1999) 14308-14328. Available at: http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Federal-Register-Notices.cfm.
- NMFS. 2000a. Endangered Species Act Reinitiated Section 7 Consultation Effects of Pacific coast ocean and Puget Sound salmon fisheries during the 2000-2001 annual regulatory cycle. NMFS, Protected Resources Division. April 28, 2000. 99 pp.
- NMFS. 2000b. Endangered Species Act Reinitiated Section 7 Consultation Biological Opinion and Incidental Take Statement. Effects of Pacific Coast Salmon Plan on California Central Valley spring-run Chinook, and California coastal Chinook salmon. NMFS, Protected Resources Division. April 28, 2000. 31 pp.
- NMFS. 2000c. RAP A risk assessment procedure for evaluating harvest mortality on Pacific Salmonids. Sustainable Fisheries Division, NMFS, Northwest Region and Resource Utilization and Technology Division, NMFS, Northwest Fisheries Science Center. May 23, 2000. 33 p.

- Northwest Power and Conservation Council. Columbia River Basin Fish and Wildlife Program 2017 Research Plan, Pre-publication version. Available online: https://www.nwcouncil.org/media/filer-public/a0/34/a0342e25-7532-4bab-a811-c5dfbfa28517/2017-4.pdf. Portland, Oregon.
- NRC (National Research Council). 1996. Upstream: Salmon and society in the Pacific Northwest. National Academy Press, Washington D.C.
- Paquet, P. J., T. Flagg, A. Appleby, J. Barr, L. Blankenship, D. Campton, M. Delarm, T. Evelyn, D. Fast, J. Gislason, P. Kline, D. Maynard, L. Mobrand, G. Nandor, P. Seidel, and S. Smith. 2011. Hatcheries, Conservation, and Sustainable Fisheries—Achieving Multiple Goals: Results of the Hatchery Scientific Review Group's Columbia River Basin Review. Fisheries 36:11, 547-561.
- Pearsons, T.N., and A.L. Fritts. 1999. Maximum size of chinook salmon consumed by juvenile coho salmon. North American Journal of Fisheries Management 19:165-170.
- Pearsons, T.N., and C.W. Hopley. 1999. A practical approach for assessing ecological risks associated with fish stocking programs. Fisheries 24(9):16-23.
- Pearsons, T.N. 2002. Chronology of ecological interactions associated with the lifespan of salmon supplementation programs. Fisheries 27(12):10-15.
- Pearsons, T.N., S.R. Phelps, S.W. Martin, E.L. Bartrand, and G.A. McMichael. 2007. Gene flow between resident and anadromous rainbow trout in the Yakima Basin: Ecological and genetic evidence. Pages 56-64 in R. K. Schroeder and J. D. Hall, editors. Redband trout: resilience and challenge in a changing landscape. Oregon Chapter, American Fisheries Society, Corvallis, Oregon.
- Pearsons, T.N. and G.M. Temple. 2007. Impacts of Early Stages of Salmon Supplementation and Reintroduction Programs on Three Trout Species. North American Journal of Fisheries Management 27:1-20.
- Pearsons, T.N., A.L. Fritts, and J.L. Scott. 2007. The effects of hatchery domestication on competitive dominance of juvenile spring Chinook salmon. Canadian Journal of Fisheries and Aquatic Sciences 64:803-812.
- Pearsons, T.N., D.D. Roley, and C.L. Johnson. 2007. Development of a carcass analog for nutrient restoration in streams. Fisheries 32:114-124.
- Pearsons, T.N. 2008. Misconception, reality, and uncertainty about ecological interactions and risks between hatchery and wild salmonids. Fisheries 33:278-290.
- Pearsons, T.N., C.L. Johnson, B.B. James, and G.M. Temple. 2009. Abundance and Distribution of Precociously Mature Male Spring Chinook Salmon of Hatchery and Natural Origin in the Yakima River. North American Journal of Fisheries Management 29:778-790.

- Pearsons, T.N. and G.M. Temple. 2010. Changes to Rainbow Trout Abundance and Salmonid Biomass in a Washington Watershed as Related to Hatchery Salmon Supplementation. Transactions of the American Fisheries Society 139:502-520.
- Pearsons, T.N. 2010. Operating Hatcheries within an Ecosystem Context Using the Adaptive Stocking Concept. Fisheries 35:23-31.
- Pacific Salmon Commission (PSC). 1994. Pacific Salmon Commission Joint Chinook Technical Committee 1993 annual report. Pacific Salmon Commission. Report Chinook (94)-1, 121 p. + app. (Available from Pacific Salmon Commission, 600-1155 Robson St., Vancouver, B.C. V6E 1B5.)
- RASP (Regional Assessment of Supplementation Planning). 1992. Supplementation in the Columbia River Basin, Parts 1-5. Report DOE/<u>BP 01830-11</u>, Bonneville Power Administration.
- Rechisky, E.L., D.W. Welch, A.D. Porter, M.C. Jacobs, A. Ladouceur. 2009. Experimental measurement of hydrosystem-induced delayed mortality in juvenile Columbia River spring Chinook salmon using a large-scale acoustic array. Canadian Journal of Fisheries and Aquatic Sciences 66: 1019-1024.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191:382.
- Salafsky, N., R. Margoluis, and K. Redford. 2001. Adaptive management: A tool for conservation practitioners. Washington, D.C. Biodiversity Support Program. Available at: http://www.fosonline.org/wordpress/wp-content/uploads/2010/06/AdaptiveManagementTool.pdf
- Sandford, B.P. and S.G. Smith. 2002. Estimation of smolt-to-adult return percentages for Snake River Basin anadromous salmonids, 1990-1997. Journal of Agricultural, Biological, and Environmental Statistics 7:243-263.
- Schroder, S.L., C.M. Knudsen, T.N. Pearsons, T.W. Kassler, S.F. Young, C.A. Busack, and D.E. Fast. 2008. Breeding Success of Wild and First-Generation Hatchery Female Spring Chinook Salmon Spawning in an Artificial Stream. Transactions of the American Fisheries Society, 137:1475-1489.
- Schroder, S.L., C.M. Knudsen, T.N. Pearsons, T.W. Kassler, S.F. Young, E.P. Beall, and D.E. Fast. 2010. Behavior and Breeding Success of Wild and First-Generation Hatchery Male Spring Chinook Salmon Spawning in an Artificial Stream. Transactions of the American Fisheries Society, 139:989-1003.
- Schroder, S.L., C.M. Knudsen, T.N. Pearsons, T.W. Kassler, E.P. Beall, S.F. Young, and D.E. Fast. 2012. Breeding Success of four male life history types of spring Chinook Salmon spawning in an artificial stream. Environmental Biology of Fishes, 94:231-248.

- Smith, E.P., D.R. Orvos, and J. Cairns, Jr. 1993. Impact assessment using the before-after-control-impact (BACI) model: concerns and comments. Canadian Journal of Fisheries and Aquatic Sciences 50:627-637.
- Stewart-Oaten, A., W.W. Murdoch, and K.R. Parker. 1986. Environmental impact assessment: pseudoreplication in time? Ecology: 67:929-940.
- TAC (*United States versus Oregon* Technical Advisory Committee). 1997. 1996 All Species Review, Columbia River Fish Management Plan. August 4, 1997. Columbia River Inter-Tribal Fish Commission, Portland, Oregon.
- Temple, G.M. and T. N. Pearsons. 2006. Evaluation of the recovery period in mark-recapture population estimates of rainbow trout in small streams. North American Journal of Fisheries Management 26:941-948.
- Temple, G.M., and T.N. Pearsons. 2007. Electrofishing: Backpack and Driftboat. Pages 95-132 in D. L. Johnson and 6 editors. Salmonid Field Protocol Handbook. American Fisheries Society, Bethesda, Maryland. (Protocols Handbook Chapter 3).
- Temple, G.M., T. Newsome, T.D. Webster, and S.W. Coil. 2012. Interactions between rainbow trout and reintroduced coho salmon in Taneum Creek, Washington. Chapter 2 in Ecological interactions between non-target taxa of concern and hatchery supplemented salmon, Annual Report to BPA. Available at: https://pisces.bpa.gov/release/documents/documentviewer.aspx?doc=P128686
- Temple, G.M., T. Newsome, T.D. Webster, and S.W. Coil. 2017. Evaluation of Rainbow Trout Abundance, Biomass, and Condition Following Coho Salmon Reintroduction in Taneum Creek, Washington. Northwest Science 91:54-68.
- Tiffan, K.F., P.G. Wagner, K.S. Wolf, and P.A. Hoffarth. 2009. Application of the SHOALS survey system to fisheries investigations in the Columbia River. *In J.M. Bayer and J.L. Schei*, (eds.). PNAMP Special Publication: Remote Sensing Applications for Aquatic Resource Monitoring, Pacific Northwest Aquatic Monitoring Partnership, Cook, WA. Chapter 5, p. 35-42.
- USACE (United States Army Corps of Engineers). 2014. Double-crested Cormorant Management Plan to Reduce Predation of Juvenile Salmonids in the Columbia river Estuary, Draft Environmental Impact Statement. United States Army Corps of Engineers, Portland, Oregon. Available online at: http://www.nwp.usace.army.mil/Portals/24/docs/announcements/EIS/DRAFT_Double-Crested Cormorant Plan Reduce Predation Columbia River Estuary EIS.pdf
- Venditti, D.A.,R.N. Kinzer, K.A. Apperson, B. Barnett, M. Belnap, T. Copeland, M.P. Corsi, and K. Tardy. 2017. Effects of hatchery supplementation on abundance and productivity of natural-origin Chinook salmon: two decades of evaluation and implications for conservation programs. Canadian Journal of Fisheries and Aquatic

- Sciences, https://doi.org/10.1139/cjfas-2016-0344. See also: https://nwcouncil.app.box.com/s/gsolcxk9nv1w3897am4th5nl7xe6108g.
- Waters, C.D., J.J. Hard, M.S.O. Brieuc, D.E. Fast, K.I. Warheit, R. Waples, C.M. Knudsen, W.J. Bosch, and K.A. Naish. 2015. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evolutionary Applications 8:956-971. DOI: 10.1111/eva.12331.
- Welch, D.W., E.L. Rechisky, M.C. Melnychuk, A.D. Porter, C.J. Walters, S. Clements, B.J. Clemens, R.S. McKinley, C. Schreck. 2008. Survival of migrating salmon smolts in large rivers with and without dams. PLoS Biology Vol. 6, Issue 10, p e265, doi:10.1371/journal.pbio.0060265.
- Wise, D.R., M.L. Zuroske, K.D. Carpenter, and R.L. Kiesling. 2009. Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07: U.S. Geological Survey Scientific Investigations Report 2009-5078, 108 p.
- Wright, S. G. 1970. Size, age, and maturity of coho salmon in Washington's ocean troll fishery. Wash. Dep. Fish., Fish. Res. Papers 3(2):63-71.
- Yakama Nation. 2019. Revised Master Plan for Yakima Subbasin Summer-and Fall-Run Chinook, Coho Salmon and Steelhead. Confederated Tribes and Bands of the Yakama Nation. Toppenish, WA. September 2019.
- Yakama Subbasin Fish and Wildlife Planning Board (YSFWPB). 2004. Final Draft Yakima Subbasin Plan, May 28, 2004 and Management Plan Supplement Yakima Subbasin Plan, November 26, 2004. Yakima, Wa. Available at: http://www.ybfwrb.org/recovery-planning/subbasin-plan/

APPENDICES

- A. Use of Data and Products
- B. Summary of Data Collected by the Yakama Nation relative to Yakima River Spring Chinook Salmon and the Cle Elum Spring Chinook Supplementation and Research Facility
- C. 2022 Annual Chandler Certification for Out-migrating Spring (Yearling) Chinook Smolts
- D. Survival to McNary Dam for PIT-tagged Spring Chinook Salmon smolts released at Roza Dam from 1999--2022
- E. Juvenile Coho outmigration survival and adult Coho returns to the Yakima Basin, 1999-2022
- F. Juvenile Outmigration Survival of Yakima Basin Summer Chinook Smolts to Prosser and McNary Dams, 2009-2022

Appendix A: Use of Data & Products

All data and findings should be considered preliminary until results are published in the peer-reviewed literature.

Where will you post or publish the data your project generates?

Fish Passage Center

Yakama Nation Fisheries website

RMIS - Regional Mark Information System

Columbia River DART

StreamNet Database

cbfish.org (see projects 1995-063-25 and 1988-120-25)

PTAGIS Website

Washington State SaSI

A system has been developed that serves Yakima Basin adult abundance and trap sampling (requires login) data for the Prosser and Roza data sets. This system can be accessed at: https://www.yakamafish-nsn.gov/fish-data.

Describe the accessibility of the data and what the requirements are to access them?

- Prosser and Roza dam daily count and trap sample (requires login) data https://www.yakamafish-nsn.gov/fish-data.
- Integration of PIT and CWT release and recovery data with <u>PTAGIS</u>, <u>RMIS</u>, and <u>Fish</u> <u>Passage Center</u> databases (available to the public)
- BPA quarterly and annual reports (e.g., PISCES, available to the public via CBfish.org)
- NPCC project proposals (available to the public via nwcouncil.org)
- Yakima Basin <u>conference presentations</u> and <u>project technical reports</u> (available to the public)
- Yakima Basin <u>Status and Trends Annual Reports</u> (available to the public)

Additional data is available in the main body and other appendices of this report and by email contact through the data managers (Yakima Basin, contact Bill Bosch, bill bosch@yakama.com; Klickitat Basin, contact Michael Babcock, mbabcock@ykfp.org). Project data managers continue to participate in the Coordinated Assessments process to develop pilot exchange templates for adult and juvenile abundance and productivity parameters. However, we continue to believe that the best way to prioritize our data management work load is to develop databases to store the status and trend data we have been collecting over many years as well as the web tools necessary to access these data in downloadable format. The system we have developed to share Prosser and Roza dam daily count and trap sample data is an example of the progress we are making towards this end.

Appendix B

Summary of Data Collected by the Yakama Nation relative to Yakima River Spring Chinook Salmon and the Cle Elum Spring Chinook Supplementation and Research Facility

2022 Annual Report

Sept. 12, 2023

Prepared by:

Bill Bosch Yakima/Klickitat Fisheries Project Yakama Nation Fisheries 760 Pence Road Yakima, WA 98908

Prepared for:

Bonneville Power Administration P.O. Box 3621 Portland, OR 97208 Project Numbers: 1995-063-25 Contract Numbers: 56662 REL 263

Acknowledgments

Monitoring and evaluation efforts for the Cle Elum Supplementation and Research Facility (CESRF) and Yakima River spring Chinook salmon are the result of a cooperative effort by many individuals from a variety of agencies including the Yakama Nation Fisheries Program (YN), the Washington Department of Fish and Wildlife (WDFW), the United States Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration Fisheries department (NOAA Fisheries) as well as some consultants and contractors.

The core project team includes the following individuals: Mark Johnston, Bill Bosch, Shubha Pandit, Andrew Matala, Daylen Isaac, Chris Frederiksen, Michael Porter, Joe Hoptowit, and a number of technicians from the YN; Charles Strom and a number of assistants from the CESRF; Anthony Fritts, Gabe Temple, Christopher Johnson, and a number of assistants from the WDFW; the USFWS for fish health related analyses; and Don Larsen, Andy Dittman, and assistants from NOAA Fisheries. The technicians and assistants are too numerous and varied to mention each by name (and risk leaving some out). However, their hard work in the field is the source of much of the raw data needed to complete this report. We sincerely appreciate their hard work and dedication to this project.

We would especially like to thank former members of the Yakima/Klickitat Fisheries Project, Dave Fast, David Lind, Paul Huffman, Bruce Watson, Joel Hubble, Bill Hopley, Todd Pearsons, Steve Schroder, Curt Knudsen, Doug Neeley and Craig Busack. These individuals put in countless hours of hard work during the planning, design, and implementation of this project. Their contributions helped to lay a solid foundation for this project and our monitoring and evaluation efforts. Dan Barrett (retired) served as the manager of the CESRF from 1997-2002. He helped to lay a solid foundation for the critical work done day in and day out at the Cle Elum facility.

We also need to recognize and thank the Yakama Nation and WDFW for their continued support, and the Columbia River Inter-Tribal Fish Commission, the University of Idaho, the Pacific States Marine Fisheries Commission, Mobrand, Jones, and Stokes, and Central Washington University for their many contributions to this project including both recommendations and data services.

This work is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. Michelle O'Malley is BPA's contracting officer and technical representative (COTR) for this project. David Byrnes and Patricia Smith preceded Michelle in this position and contributed substantially to the project over the years.

Abstract

Historically, the return of spring Chinook salmon (*Oncorhynchus tshawytscha*) to the Yakima River numbered about 200,000 fish annually (BPA, 1990). Spring Chinook returns to the Yakima River averaged fewer than 3,500 fish per year through most of the 1980s and 1990s (less than 2% of the historical run size).

In an attempt to reverse this trend the Northwest Power and Conservation Council (formerly the Northwest Power Planning Council, NPPC) in 1982 first encouraged Bonneville Power Administration (BPA) to "fund the design, construction, operation, and maintenance of a hatchery to enhance the fishery for the Yakima Indian Nation as well as all other harvesters" (NPPC 1982). After years of planning and design, an Environmental Impact Statement (EIS) was completed in 1996 and the CESRF was authorized under the NPCC's Fish and Wildlife Program with the stated purpose being "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits". The CESRF became operational in 1997. This project is co-managed by the Yakama Nation and the Washington Department of Fish and Wildlife (WDFW) with the Yakama Nation as the lead entity.

This report documents data collected from Yakama Nation tasks related to monitoring and evaluation of the CESRF and its effect on natural populations of spring Chinook in the Yakima Basin through 2021. This report is not intended to be a scientific evaluation of spring Chinook supplementation efforts in the Yakima Basin. Rather, it is a summary of methods and data (additional information about methods used to collect these data may be found in the main section of this annual report) relating to Yakima River spring Chinook collected by Yakama Nation biologists and technicians from 1982 (when the Yakama Nation fisheries program was implemented) to present. Data summarized in this report include:

- Adult-to-adult returns
- Annual run size and escapement
- Adult traits (e.g., age composition, size-at-age, sex ratios, migration timing, etc.)
- CESRF reproductive statistics (including fecundity and fish health profiles)
- CESRF juvenile survival (egg-to-fry, fry-to-smolt, smolt-to-smolt, and smolt-to-adult)
- CESRF juvenile traits (e.g., length-weight relationships, migration timing, etc.)
- Harvest impacts

The data presented here are, for the most part, "raw" data and should not be used without paying attention to caveats associated with these data and/or consultation with project biologists. No attempt is made to explain the significance of these data in this report as this is left to more comprehensive reports and publications produced by the project. Data in this report should be considered preliminary until published in the peer reviewed literature.

Table of Contents

Abstract	1
List of Tables	iii
List of Figures	v
List of Appendices	v
Introduction	1
Program Objectives	1
Facility Descriptions	1
Yakima River Basin Overview	2
Adult Salmon Evaluation	3
Broodstock Collection and Representation	3
Natural- and Hatchery-Origin Escapement	5
Adult-to-adult Returns	
Age Composition	14
Sex Composition	
Size at Age	25
Migration Timing	34
Spawning Timing	
Redd Counts and Distribution	37
Homing	38
Straying	
CESRF Spawning and Survival	40
Female BKD Profiles	
Fecundity	44
Juvenile Salmon Evaluation	
Food Conversion Efficiency	45
Length and Weight Growth Profiles	
Juvenile Fish Health Profile	
Incidence of Precocialism	47
Smolt Outmigration Timing	
Smolt-to-Smolt Survival	
Smolt-to-Adult Survival	53
Harvest Monitoring	62
Yakima Basin Fisheries	
Marine Fisheries	
Literature Cited	67

List of Tables

Table 1. Counts of wild/natural spring Chinook (including jacks), brood collection, and
brood representation of wild/natural run at Roza Dam, 1997 – present
Table 2. Escapement (Roza Dam counts less brood stock collection and harvest above
Roza) of natural- (NoR) and hatchery-origin (HoR) spring Chinook to the upper
Yakima subbasin, 1982 – present
Table 3. Yakima River spring Chinook run (CESRF and wild, adults and jacks
combined) reconstruction, 1992-present
Table 4. Adult-to-adult productivity indices for upper Yakima wild/natural stock 9
Table 5. Adult-to-adult productivity indices for Naches River wild/natural stock 10
Table 6. Adult-to-adult productivity indices for American River wild/natural stock 11
Table 7. Adult-to-adult productivity indices for Naches/American aggregate
(wild/natural) population
Table 8. Adult-to-adult productivity for Cle Elum SRF spring Chinook
Table 9. Percentage by sex and age of American River wild/natural spring Chinook
carcasses sampled on the spawning grounds and sample size (n), 1986-present 15
Table 10. Percentage by sex and age of Naches River wild/natural spring Chinook
carcasses sampled on the spawning grounds and sample size (n), 1986-present 16
Table 11. Percentage by sex and age of upper Yakima River wild/natural spring Chinook
carcasses sampled on the spawning grounds and sample size (n), 1986-present 17
Table 12. Percentage by sex and age of upper Yakima River CESRF spring Chinook
carcasses sampled on the spawning grounds and sample size (n), 2001-present 18
Table 13. Percentage by sex and age of upper Yakima River wild/natural spring Chinook
collected for brood stock at Roza Dam and sample size (n), 1997-present
Table 14. Percentage by sex and age of upper Yakima River CESRF spring Chinook
collected for research or brood stock at Roza Dam and sample size (n), 2001-
present19
Table 15. Percent of American River wild/natural spring Chinook carcasses sampled on
the spawning grounds by age and sex, 1986-present
Table 16. Percent of Naches River wild/natural spring Chinook carcasses sampled on the
spawning grounds by age and sex, 1986-present
Table 17. Percent of Upper Yakima River wild/natural spring Chinook carcasses
sampled on the spawning grounds by age and sex, 1986-present
Table 18. Percent of upper Yakima River CESRF spring Chinook carcasses sampled on
the spawning grounds by age and sex, 2001-present.
Table 19. Percent of upper Yakima River wild/natural spring Chinook collected for
brood stock at Roza Dam by age and sex, 1997-present
Table 20. Percent of Upper Yakima River CESRF spring Chinook collected for research
or brood stock at Roza Dam by age and sex, 2001-present
Table 21. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate
lengths (cm) of American River wild/natural spring Chinook from carcasses
sampled on the spawning grounds by sex and age, 1988-present
Table 22. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate
lengths (cm) of Naches River wild/natural spring Chinook from carcasses sampled
on the spawning grounds by sex and age, 1988-present
on the spawning grounds by sex and age, 1700-present

Table 23. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate
lengths (cm) of upper Yakima River wild / natural spring Chinook from carcasses
sampled on the spawning grounds by sex and age, 1986-present
Table 24. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper
Yakima River CESRF spring Chinook from carcasses sampled on the spawning
grounds by sex and age, 2001-present.
Table 25. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper
Yakima River wild/natural spring Chinook from carcasses sampled at the CESRF
prior to spawning by sex and age, 1997-present
Table 26. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper
Yakima River CESRF spring Chinook from carcasses sampled at the CESRF prior
to spawning by sex and age, 2001-present
¹ Few length samples were collected for spawning or research in 2006, and 2021-
2022. Table 27. Counts and mean post-orbital to hypural plate (POHP) lengths (cm)
of upper Yakima River wild/natural spring Chinook from fish sampled at Roza Dam
by sex ¹ and age, 1997-present
¹ Sex determined by visual observation prior to 2010 and by ultrasound from 2010 to
present. Table 28. Counts and mean post-orbital to hypural plate (POHP) lengths
(cm) of upper Yakima River CESRF spring Chinook from fish sampled at Roza
Dam by sex ¹ and age, 2001-present.
Table 29. Comparison of 5%, median (50%), and 95% passage dates of wild/natural and
CESRF adult spring Chinook (including jacks) at Roza Dam, 1997-Present
Table 30. Median spawn ¹ dates for spring Chinook in the Yakima Basin
Table 31. Yakima Basin spring Chinook redd count summary, 1981 – present
Table 32. Estimated number of PIT- and CWT-tagged CESRF fish not returning to the
Yakima River Basin (strays), brood years 1997-present
Table 33. Cle Elum Supplementation and Research Facility spawning and survival
statistics (NoR brood only), 1998 - present
Table 34. Cle Elum Supplementation and Research Facility spawning and survival
statistics (HoR brood only), 2002 - present
Table 35. Mean fecundity by age of adult females (BKD rank < 6) spawned at CESRF,
1997-present
Table 36. Mean food conversion (lbs fed/lbs gained) of CESRF juveniles by brood year
and growth month, 1997 – present
Table 37. CESRF total releases by brood year, treatment, and acclimation site
Table 38. CESRF average pond densities at release by brood year, treatment, and
acclimation site
Table 39. Estimated smolt passage at Chandler and smolt-to-adult return indices
(Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and
CESRF-origin spring Chinook
Table 40. Estimated wild/natural smolt-to-adult return rates (SAR) based on adult
detections of PIT tagged fish
Table 41. Estimated CESRF smolt-to-adult return rates (SAR) based on adult detections
of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns 57

Table 42. Overall McNary Dam (MCN) smolt to Bonneville Dam adult (BOA) return rates (SAR) based on juvenile and adult detections of wild/natural Yakima R. spring	5
Chinook PIT-tagged and released at Roza Dam	
Table 43. Overall McNary Dam smolt (MCN) to Bonneville Dam adult (BOA) return rates (SAR) based on juvenile and adult detections of CESRF PIT-tagged spring Chinook	9
Table 44. Estimated release-to-adult survival of PIT-tagged CESRF fish (CESRF tagged smolts to Bonneville and Roza Dam adult returns).	
Table 45. Estimated release-to-adult survival of non-PIT-tagged CESRF fish (CESRF tagged smolts to Roza Dam adult returns)	1
Table 46. Spring Chinook harvest in the Yakima River Basin, 1985-present	3
in Columbia River mainstem and terminal area fisheries, 1986-present	
Information System (RMIS) Dec. 15, 2022)
List of Figures Figure 1. Yakima River Basin	7
Figure 2. Mean spring Chinook run timing and broodstock collection at Roza Dam, 2013-2022.	
Figure 3. Proportionate passage timing at Roza Dam of wild/natural and CESRF adult spring Chinook (including jacks), 2013-2022	
Figure 4. Proportion of wild/natural females spawned at CESRF by BKD rank, 1997 – present	
Figure 5. Mean fork length (cm) of CESRF juveniles by brood year and growth month, 1997 - present	6
Figure 6. Mean Weight (fish/lb) of CESRF juveniles by brood year and growth month, 1997 - present	
Figure 7. ELISA-risk profile of CESRF juveniles by brood year, 1997 – present (data source: USFWS).	7
Figure 8. Mean flow approaching Prosser Dam versus mean estimated smolt passage at Prosser of aggregate wild/natural and CESRF spring Chinook for outmigration years 1999-2022.	
Figure 9. Marine recovery locations of coded-wire-tagged CESRF spring Chinook, recovery years 2008-2012	5
List of Appendices	
Appendix A . Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2021.	8

Introduction

Program Objectives

The CESRF was authorized in 1996 under the NPCC's Fish and Wildlife Program with the stated purpose being "to test the assumption that new artificial production can be used to increase harvest and natural production while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits". The CESRF became operational in 1997. The experimental design calls for a total release of 810,000 smolts annually from each of three acclimation sites associated with the facility (see facility descriptions). To minimize risk of over-collecting brood stock and to maintain lower pond rearing densities, the YKFP policy group took action in 2011 to create a release target range of 720,000-810,000 smolts for brood collection purposes. Female percentage, fecundity and survival rates are expected to result in releases between 720,000 and 810,000 smolts in most years. The first program cycle (brood years 1997 through 2001) also included testing new Semi-Natural rearing Treatments (SNT) against the Optimum Conventional Treatments (OCT) of existing successful hatcheries in the Pacific Northwest. The second program cycle (brood years 2002-2004) tested whether a slower, more natural growth regime could be used to reduce the incidence of precocialism that may occur in hatchery releases without adversely impacting overall survival to adult returns. Subsequent broods have generally tested survival using different types of feed treatment or used a standard treatment in all raceways. With guidance and input from the NPCC and the Independent Scientific Review Panel (ISRP) in 2001, the Naches subbasin population of spring Chinook was established as a wild/natural control. A hatchery control line at the CESRF was also established with the first brood production for this line collected in 2002. Please refer to the project's "Supplementation Monitoring Plan" (Chapter 7 in 2005 annual report on project genetic studies) for additional information regarding these control lines.

Facility Descriptions

Returning adult spring Chinook are monitored at the Roza adult trapping facility located on the Yakima River (Rkm 205.8). This facility provides the means to monitor every fish returning to the upper Yakima Basin and to collect adults for the CESRF program. All returning CESRF fish (adipose-clipped fish) are sampled for biological characteristics and marks and returned to the river with the exception of fish collected for broodstock, experimental sampling, and all hatchery control line fish. Through 2006, all wild/natural fish passing through the Roza trap were returned directly to the river with the exception of fish collected for broodstock or fish with metal tag detections which were sampled for marks and biological characteristics. Beginning in 2007, all wild/natural fish were sampled (as described above) and tissue samples were collected for a "Whole Population" Pedigree Study of Upper Yakima Spring Chinook (see related project 2009-009-00).

The CESRF is located on the Yakima River just south of the town of Cle Elum (rkm 295.5). It is used for adult broodstock holding and spawning, and early life incubation and rearing. Fish are spawned in September and October of a given brood year (BY). Fish are typically ponded in March or April of BY+1. The juveniles are reared at Cle Elum, marked in October through

December of BY+1, and moved to one of three acclimation sites for final rearing in January to February of BY+2. Acclimation sites are located at Easton (ESJ, rkm 317.8), Clark Flats near the town of Thorp (CFJ, rkm 266.6), and Jack Creek (JCJ, approximately 32.5 km north of Cle Elum) on the North Fork Teanaway River (rkm 10.2). Fish are volitionally released from the acclimation sites beginning on March 15 of BY+2, with any remaining fish "flushed out" of the acclimation sites by May 15 of BY+2. The annual production goal for the CESRF program is 720,000 to 810,000 fish for release as yearlings at 30 g/fish or 15 fish per pound (fpp) although size-at-release may vary depending on experimental protocols (see Program Objectives).

Yakima River Basin Overview

The Yakima River Basin is located in south central Washington. From its headwaters near the crest of the Cascade Range, the Yakima River flows 344 km (214 miles) southeastward to its confluence with the Columbia River (Rkm 539.5; Figure 1).

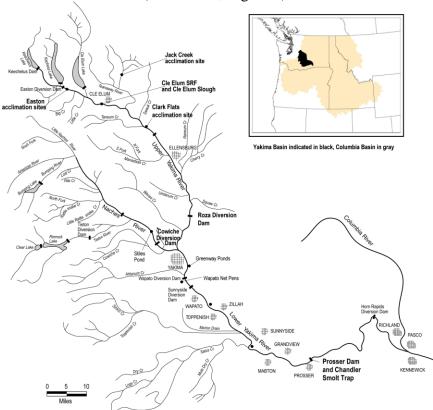


Figure 1. Yakima River Basin.

Three genetically distinguishable populations of spring Chinook salmon exist in the Yakima basin: the American River, the Naches, and the Upper Yakima Stocks (Figure 1). The upper Yakima was selected as the population best suited for supplementation and associated evaluation and research efforts.

Local habitat problems related to irrigation, logging, road building, recreation, agriculture, and livestock grazing have limited the production potential of spring Chinook in the Yakima River basin. It is hoped that recent initiatives to improve habitat within the Yakima Basin, such as those being funded through the NPCC's fish and wildlife program, the Pacific Coastal Salmon Recovery Fund, and the Washington State salmon recovery fund, and the Yakima Basin Integrated Plan will: 1) restore and maintain natural stream stability; 2) reduce water temperatures; 3) reduce upland erosion and sediment delivery rates; 4) improve and re-establish riparian vegetation; and 5) re-connect critical habitats throughout the basin. These habitat restoration efforts should permit increased utilization of habitat by spring Chinook salmon in the Yakima basin thereby increasing fish survival and productivity.

Adult Salmon Evaluation

Broodstock Collection and Representation

One of the program's goals is to collect broodstock from a representative portion of the population throughout the run. If the total run size could be known in advance, collecting brood stock on a daily basis in exact proportion to total brood need as a proportion of total run size would result in ideal run representation. Since it is not possible to know the run size in advance, the CESRF program uses a brood collection schedule that is based on average run timing once the first fish arrive at Roza Dam. We have found that, while river conditions dictate run timing (i.e., fish may arriver earlier or later depending on flow and temperature), once fish begin to move at Roza, the pattern in terms of relative run strength over time is very similar from year to year. Thus a brood collection schedule matching normal run timing patterns was developed to assure that fish are collected from all portions of the run (Figure 2).

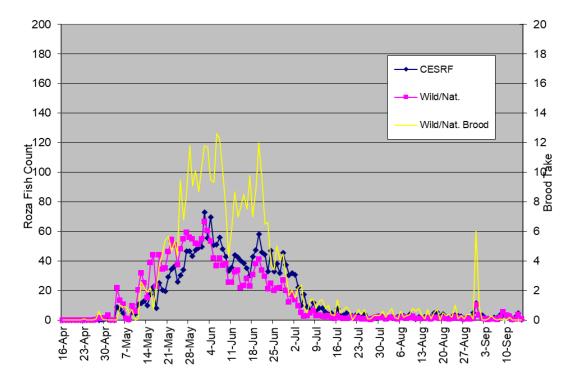


Figure 2. Mean spring Chinook run timing and broodstock collection at Roza Dam, 2013-2022.

Appendix B. Yakima River / CESRF Spring Chinook Salmon – Yakama Nation Data Summary
2022 Annual Report, Sept. 12, 2023

Another program goal is to take no more than 50% of the wild/natural adult return to Roza Dam for broodstock. Given this goal and with a set brood collection schedule at Roza Dam, the project imposed a rule that no more than 50% of the fish arriving on any given day be taken for broodstock. Under-collection relative to the schedule is "carried over" to subsequent days and weeks. This allows brood collection to adjust relative to actual run timing and run strength. Performance across years with respect to these brood collection goals is given in Table 1. Since 2015, the spring Chinook return has been impeded by thermal barriers in the lower Yakima River as warmer air temperatures combined with reduced summer and fall flows have increased water temperatures. Mean daily water temperatures near Prosser (rkm 76 from the mouth of the Yakima R.) have exceeded 68° F on several days between June and September during these years (source U.S. BOR hydromet database). This may have caused a large number of fish to stray or be delayed in their migration above Roza Dam.

Table 1. Counts of wild/natural spring Chinook (including jacks), brood collection, and brood representation of wild/natural run at Roza Dam, 1997 – present.

	Trap	Brood	Brood	Portion	of run colle	ected:1	Portion o	f collection	from:2
Year	Count	Take	%	Early ³	$Middle^3$	Late ³	Early ³	$Middle^3$	Late ³
1997	1,445	261	18.1%	26.4%	17.6%	17.7%	7.3%	83.1%	9.6%
1998	795	408	51.3%	51.1%	51.3%	51.9%	5.6%	84.3%	10.0%
1999	1,704	738	43.3%	44.6%	44.1%	35.9%	5.6%	86.3%	8.1%
2000	11,639	567	4.9%	10.7%	4.5%	4.4%	12.5%	77.8%	9.7%
2001	5,346	595	11.1%	6.9%	11.4%	10.7%	3.0%	87.7%	9.2%
2002	2,538	629	24.8%	15.7%	25.2%	26.1%	3.2%	86.3%	10.5%
2003	1,558	441	28.3%	52.5%	25.9%	36.4%	9.5%	77.8%	12.7%
2004	7,804	597	7.6%	2.6%	7.4%	12.8%	2.0%	81.6%	16.4%
2005	5,086	510	10.0%	2.2%	9.5%	21.9%	1.3%	77.0%	21.7%
2006	2,050	419	20.4%	48.5%	22.2%	41.0%	9.1%	75.1%	15.8%
2007	1,293	449	34.7%	25.0%	34.4%	60.6%	3.2%	80.0%	16.9%
2008	1,677	457	27.3%	57.7%	26.7%	32.4%	9.3%	79.0%	11.6%
2009	3,030	486	16.0%	10.0%	14.1%	35.9%	3.5%	73.9%	22.6%
2010	3,185	336	10.5%	6.4%	15.0%	22.5%	2.0%	82.6%	15.3%
2011	4,395	377	8.6%	11.3%	9.2%	21.3%	5.6%	73.2%	21.2%
2012	2,924	374	12.8%	1.9%	12.3%	27.4%	1.1%	79.9%	19.0%
2013	2,784	398	14.3%	18.5%	13.0%	22.0%	9.5%	75.1%	15.3%
2014	4,168	384	9.2%	4.8%	8.6%	16.9%	2.3%	80.5%	17.1%
2015	3,962	442	11.2%	3.1%	8.2%	40.6%	2.0%	59.9%	38.1%
2016	2,712	376	13.9%	5.3%	14.8%	18.6%	2.5%	84.7%	12.9%
2017	1,711	382	22.3%	53.6%	19.0%	45.4%	11.4%	69.9%	18.7%
2018	827	294	35.6%	3.0%	33.7%	87.6%	0.3%	75.1%	24.6%
2019	703	306	43.5%	48.1%	46.3%	29.1%	8.3%	84.3%	7.3%
2020	958	405	42.3%	47.7%	48.1%	15.9%	4.9%	91.1%	4.0%
2021	1,214	412	33.9%	49.3%	40.8%	0.0%	7.7%	92.3%	0.0%
2022	2,072	377	18.2%	16.4%	20.3%	10.4%	5.2%	88.5%	6.3%

^{1.} This is the proportion of the earliest, middle, and latest running components of the entire wild/natural run which were taken for broodstock. Ideally, this collection percentage would be equal throughout the run and would match the "Brood %".

^{2.} This is the proportion of the total broodstock collection taken from the earliest, middle, and latest components of the entire wild/natural run. Ideally, these proportions would match the definitions for early, middle, and late given in 3.

^{3.} Early is defined as the first 5% of the run, middle is defined as the middle 85%, and late as the final 10% of the run.

Natural- and Hatchery-Origin Escapement

While the project does not actively manage for a specific spawning escapement proportion (natural- to hatchery-origin adults), we are monitoring the proportion of natural influence (PNI; Table 2). The project will adaptively manage this parameter considering factors such as: policy input regarding surplusing of fish, meeting overall production goals of the project, guidance from the literature relative to percentage of hatchery fish on the spawning grounds with fitness loss, considerations about what risk is acceptable in a project designed to evaluate impacts from that risk, and the numerous risk containment measures already in place in the project. The State of Washington is using mark-selective fisheries in the lower Columbia River and, when possible, in the lower Yakima River in part as a tool to manage escapement proportions. In 2011, the project initiated an effort to transfer some returning hatchery-origin CESRF adults from Roza Dam to Lake Cle Elum for the purpose of returning marine derived nutrients and salmon to the watersheds that feed the lake. This effort will also increase PNI in the major spawning areas of the Upper Yakima Basin. Natural- and hatchery-origin escapement to the upper Yakima Basin is given in Table 2. Wild/natural escapement to the Naches subbasin is given in Table 3.

Table 2. Escapement (Roza Dam counts less brood stock collection and harvest above Roza) of natural-(NoR) and hatchery-origin (HoR) spring Chinook to the upper Yakima subbasin, 1982 – present.

-	Wild/	Natural ((NoR)	CE	SRF (Ho	oR)		Total			
Year	Adults	Jacks	Total	Adults	Jacks	Total	Adults	Jacks	Total	pHOS1	PNI^1
1982			1,146								
1983			1,007								
1984			1,535								
1985			2,331								
1986			3,251								
1987			1,734								
1988			1,340								
1989			2,331								
1990			2,016								
1991			$1,583^2$								
1992			3,009								
1993			1,869								
1994			563								
1995			355								
1996			1,631								
1997	1,141	43	1,184								
1998	369	18	387								
1999	498	468	966								
2000	10,491	481	10,972		688	688	10,491	1,169	11,660	5.9%	
2001	4,454	297	4,751	6,065	982	7,047	10,519	1,279	11,798	59.7%	62.6%
2002	1,820	89	1,909	6,064	71	6,135	7,884	160	8,044	76.3%	56.7%
2003	394	723	1,117	1,036	1,105	2,141	1,430	1,828	3,258	65.7%	60.3%
2004	6,536	671	7,207	2,876	204	3,080	9,412	875	10,287	29.9%	77.0%
2005	4,401	175	4,576	627	482	1,109	5,028	657	5,685	19.5%	83.7%
2006	1,510	121	1,631	1,622	111	1,733	3,132	232	3,364	51.5%	66.0%
2007	683	161	844	734	731	1,465	1,417	892	2,309	63.4%	61.2%
2008	988	232	1,220	2,157	957	3,114	3,145	1,189	4,334	71.9%	58.2%
2009	1,843	701	2,544	2,234	2,260	4,494	4,077	2,961	7,038	63.9%	61.0%
2010 2011	2,436	413 926	2,849	4,524	1,001	5,525	6,960	1,414	8,374	66.0% 53.2%	60.2%
2011	3,092 2,359	926 191	4,018 2,550	3,162 2,661	1,404 265	4,566 2,926	6,254 5,020	2,330 456	8,584 5,476	53.4%	65.3% 65.2%
2012	1,708	678	2,386	1,587	840	2,920	3,020	1,518	4,813	50.4%	66.5%
2013	3,099	685	3,784	2,150	794	2,944	5,249	1,479	6,728	43.8%	69.6%
2014	3,357	163	3,784	1,779	167	1,946	5,136	330	5,466	35.6%	73.7%
2015	2,070	266	2,336	1,198	705	1,903	3,268	971	4,239	44.9%	69.0%
2017	1,135	194	1,329	1,328	660	1,988	2,463	854	3,317	59.9%	62.5%
2017	500	33	533	1,033	233	1,266	1,533	266	1,799	70.4%	58.7%
2019	316	81	397	828	266	1,094	1,144	347	1,491	73.4%	57.7%
2020	497	56	553	746	341	1,087	1,243	397	1,640	66.3%	60.1%
2021	618	184	802	1,190	734	1,924	1,808	918	2,726	70.6%	58.6%
2022	1,575	120	1,695	1,521	333	1,854	3,096	453	3,549	52.2%	65.7%
Mean ³	2,227	314	2,541	2,142	667	2,715	4,039	904	4,943	54.3%	64.5%
ivican	۷,۷۷/	J1 4	2,341	∠,1≒∠	007	2,113	−, 039	704	7,273	JT.J/0	UT.J/0

^{1.} Proportion Natural Influence (including jacks) equals Proportion Natural-Origin Broodstock (pNOB; 1.0 as only NoR fish are used for supplementation line brood stock) divided by pNOB plus Proportion Hatchery-Origin Spawners (pHOS).

^{2.} This is a rough estimate since Roza counts are not available for 1991.

^{3.} For NoR columns, mean of 1997-present values. For all other columns, mean of 2001-present values.

Adult-to-adult Returns

The overall status of Yakima Basin spring Chinook is summarized in Table 3. Adult-to-adult return and productivity data for the various populations are given in Tables 4-8 (Means are for 1988 to present).

Table 3. Yakima River spring Chinook run (CESRF and wild, adults and jacks combined) reconstruction, 1992-present.

				Harvest		Harvest	Spawners						
	River N	Iouth Ru	n Size ¹	Below	Prosser	Above	Below	Roza	Roza	Est. Esca	pement	Redd Co	ounts
Year	Adults	Jacks	Total	Prosser	Count	Prosser	Roza ²	Count	Removals ³	Upper Y.R.4	Naches ⁵	Upper Y.R.	Naches
1992	4,492	107	4,599	184	4,415	161	39	3,027	18	3,009	1,188	1,230	425
1993	3,800	119	3,919	44	3,875	85	56	1,869	0	1,869	1,865	637	554
1994	1,282	20	1,302	0	1,302	25	10	563	0	563	704	285	272
1995	526	140	666	0	666	79	9	355	0	355	223	114	104
1996	3,060	119	3,179	100	3,079	375	26	1,631	0	1,631	1,047	801	184
1997	3,092	81	3,173	0	3,173	575	20	1,445	261	1,184	1,133	413	339
1998	1,771	132	1,903	0	1,903	188	3	795	408	387	917	147	330
1999	1,513	1,268	2,781	8	2,773	596	55	1,704	738	966	418	212	186
2000	17,519	1,582	19,101	90	19,011	2,368	204	12,327	667	11,660	4,112	3,770	888
2001	21,225	2,040	23,265	1,793	21,472	2,838	286	12,516	718	11,798	5,829	3,226	1,192
2002	14,616	483	15,099	328	14,771	2,780	29	8,922	878	8,044	3,041	2,816	943
2003	4,868	2,089	6,957	59	6,898	381	83	3,842	584	3,258	2,592	868	935
2004	13,974	1,315	15,289	135	15,154	1,544	90	11,005	718	10,287	2,515	3,414	719
2005	8,059	699	8,758	34	8,724	440	28	6,352	667	5,685	1,904	2,009	574
2006	5,951	363	6,314	0	6,314	600	14	4,028	664	3,364	1,672	1,245	447
2007	2,968	1,335	4,303	10	4,293	269	13	3,025	716	2,309	986	722	313
2008	6,615	1,983	8,598	539	8,059	993	9	5,478	1,144	4,334	1,578	1,372	495
2009	7,441	4,679	12,120	1,517	10,603	836	18	8,633	1,595	7,038	1,117	1,575	482
2010	11,027	2,114	13,142	156	12,986	1,585	9	9,900	1,526	8,374	1,491	2,668	552
2011	13,398	4,561	17,960	909	17,051	3,471	0	10,520	1,936	8,584	3,060	1,898	580
2012	11,083	970	12,053	1,331	10,722	1,989	7	6,826	1,350	5,476	1,900	1,468	811
2013	7,101	3,144	10,245	1,191	9,054	1,462	171	6,053	1,240	4,813	1,369	648	376
2014	8,850	2,472	11,322	221	11,101	1,950	23	7,997	1,269	6,728	1,130	1,149	379
2015	8,795	556	9,351	83	9,268	732	0	6,433	967	5,466	2,103	1,321	614
2016	5,517	1,399	6,916	24	6,892	420	42	5,098	859	4,239	1,332	611	366
2017	5,462	1,701	7,163	122	7,041	1,150	25	4,193	876	3,317	1,673	539	293
2018	3,156	448	3,605	251	3,353	297	18	2,404	605	1,799	634	348	128
2019	1,756	466	2,222	0	2,222	40	17	2,007	516	1,491	158	235	31
2020	2,833	529	3,362	24	3,338	44	24	2,211	571	1,640	1,059	237	146
2021	2,924	998	3,922	0	3,922	16	37	3,274	548	2,726	594	256	188
2022	5,431	724	6,155	0	6,155	471	26	4,410	861	3,549	1,248	470	330
Mean ⁶	5,183	1,244	6,426	192	6,235	658	38	4,408	831	3,577	1,130	584	285

^{1.} River Mouth run size is the greater of the Prosser count plus lower river harvest or estimated escapement plus all known harvest and removals.

^{2.} Estimated as the average number of fish per redd in the upper Yakima times the number of redds between the Naches confluence and Roza Dam.

^{3.} Roza removals include harvest above Roza, hatchery removals, and/or wild broodstock removals.

^{4.} Estimated escapement into the upper Yakima River is the Roza count, less harvest or broodstock removals above Roza Dam except in 1991 when Upper Yakima River escapement is estimated as the (Prosser count - harvest above Prosser - Roza subtractions) times the proportion of redds counted in the upper Yakima.

^{5.} Naches River escapement was estimated as the Prosser count, less harvest above Prosser and the Roza counts.

^{6.} Recent 10-year average (2013-2022).

Estimated spawners for the Upper Yakima River are calculated as the estimated escapement to the Upper Yakima plus the estimated number of spawners in the Upper Yakima between the confluence with the Naches River and Roza Dam (Table 3). Total returns are based on the information compiled in Table 3. Age composition for Upper Yakima returns is estimated from spawning ground carcass scale samples for the years 1982-1996 (Table 11) and from Roza Dam brood stock collection samples for the years 1997 to present (Table 13). Since age-3 fish (jacks) are not collected for brood stock in proportion to the jack run size, the proportion of age-3 fish in the upper Yakima for 1997 to present is estimated using the proportion of jacks (based on visual observation) counted at Roza Dam relative to the total run size.

Table 4. Adult-to-adult productivity indices for upper Yakima wild/natural stock.

	- ·	. 137 1 .	D M 4 2		_
Brood Estimated		ted Yakima			Returns/
Year Spawners	Age-3	Age-4	Age-5	Total	Spawner
1986 3,960	171	2,574	149	2,893	0.73
1987 2,003	53	1,571	109	1,733	0.87
1988 1,400	53	3,138	132	3,323	2.37
1989 2,466	68	1,779	9	1,856	0.75
1990 2,298	79	566	0	645	0.28
1991 1,713	9	326	22	358	0.21
1992 3,048	87	1,861	95	2,043	0.67
1993 1,925	66	1,606	57	1,729	0.90
1994 573	60	737	92	890	1.55
1995 364	59	1,036	129	1,224	3.36
1996 1,657	1,059	12,882	630	14,571	8.79
1997 1,204	621	5,837	155	6,613	5.49
1998 390	434	2,803	145	3,381	8.68
$1999 1,021^1$	164	722	45	930	0.91
2000 11,864	856	7,689	127	8,672	0.73
2001 12,087	775	5,074	222	6,071	0.50
2002 8,073	224	1,875	148	2,247	0.28
2003 3,341	158	1,036	63	1,257	0.38
2004 10,377	207	1,547	75	1,828	0.18
2005 5,713	293	2,630	14	2,936	0.51
2006 3,378	868	2,887	133	3,888	1.15
2007 2,322	456	3,976	65	4,498	1.94
2008 4,343	1,135	3,410	123	4,668	1.07
2009 7,056	283	2,572	109	2,964	0.42
2010 8,383	923	3,854	59	4,836	0.58
2011 8,584	832	3,908	144	4,883	0.57
2012 5,483	197	2,445	20	2,662	0.49
2013 4,984	299	1,622	36	1,957	0.39
2014 6,751	241	814	12	1,067	0.16
2015 5,466	66	620	14	701	0.13
2016 4,281	99	905	52	1,056	0.25
2017 3,342	75	994	14^{2}	$1,082^2$	0.32^{2}
2018 1,817	201	$2,012^2$			
2019 1,508	136^{2}	•			
2020 1,664					
2021 2,763					
$2022 3,574^2$					
Mean 3,986	320	2,612	101	3,035	1.40

^{1.} The geometric mean jack (age-3) proportion of spawning escapement from 1999-2022 was 0.17.

^{2.} Preliminary.

Estimated spawners for the Naches/American aggregate population (Table 7) are calculated as the estimated escapement to the Naches Basin (Table 3). Estimated spawners for the individual Naches and American populations are calculated using the proportion of redds counted in the Naches Basin (excluding the American River) and the American River, respectively (see Table 31). Total returns are based on the information compiled in Table 3. Age composition for Naches Basin age-4 and age-5 returns are estimated from spawning ground carcass scale samples (see Tables 9-12). The proportion of age-3 fish is estimated after reviewing jack count (based on visual observations) data at Prosser and Roza dams. Since sample sizes for carcass surveys in the American and Naches Rivers can be very low in some years (Tables 9 and 10), it is recommended that the data in Tables 5 and 6 be used as indices only. Table 7 likely provides the most accurate view of overall productivity rates in the Naches River Subbasin.

Table 5. Adult-to-adult productivity indices for Naches River wild/natural stock.

Brood	Estimated	Es	stimated Ya	kima R. Mo	outh Return	ıs	Returns/
Year	Spawners	Age-3	Age-4	Age-5	Age-6	Total	Spawner
1986	2,666	68	712	499	15	1,294	0.49
1987	1,162	27	183	197	0	407	0.35
1988	1,340	32	682	828	0	1,542	1.15
1989	992	28	331	306	0	665	0.67
1990	954	24	170	74	0	269	0.28
1991	706	7	37	121	57	222	0.31
1992	852	29	877	285	0	1,191	1.40
1993	1,145	45	593	372	0	1,010	0.88
1994	474	14	164	164	0	343	0.72
1995	124	40	164	251	0	455	3.66
1996	887	179	3,983	1,620	0	5,782	6.52
1997	762	207	3,081	708	0	3,996	5.24
1998	503	245	1,460	1,128	0	2,833	5.63
1999	358^{1}	113	322	190	0	626	1.75
2000	3,862	71	2,060	215	0	2,346	0.61
2001	3,912	126	1,254	471	0	1,850	0.47
2002	1,861	59	753	153	0	965	0.52
2003	1,400	52	237	175	0	464	0.33
2004	2,197	107	875	218	0	1,199	0.55
2005	1,439	167	653	116	0	936	0.65
2006	1,163	192	838	254	0	1,283	1.10
2007	463	125	1,649	514	0	2,288	4.94
2008	1,074	414	827	290	0	1,531	1.42
2009	903	84	448	65	0	597	0.66
2010	1,024	209	653	198	0	1,059	1.03
2011	1,942	137	1,088	305	0	1,530	0.79
2012	1,110	64	419	260	0	743	0.67
2013	750	110	660	148	0	919	1.23
2014	746	142	376	13	0	532	0.71
2015	1,285	26	34	206	0	266	0.21
2016	790	6	523	89	0	617^{2}	0.78
2017	971	32	225	139^{2}		396^{2}	0.41^{2}
2018	500	37	353^{2}				
2019	51	27^{2}					
2020	740						
2021	415						
2022	872^{2}						
Mean	1,114	97	799	339	3	1,254	1.51

^{1.} The geometric mean jack (age-3) proportion of spawning escapement from 1999-2022 was 0.09.

^{2.} Preliminary.

Table 6. Adult-to-adult productivity indices for American River wild/natural stock.

Brood	Estimated	Е	stimated Ya	kima R. Mo	outh Returns		Returns/
Year	Spawners	Age-3	Age-4	Age-5	Age-6	Total	Spawner
1984	187	54	301	458	0	813	4.36
1985	337	81	149	360	0	590	1.75
1986	1,457	36	134	329	11	509	0.35
1987	567	12	71	134	0	216	0.38
1988	827	19	208	661	5	892	1.08
1989	524	11	69	113	0	193	0.37
1990	425	15	113	84	0	213	0.50
1991	414	3	5	22	0	30	0.07
1992	335	23	157	237	0	417	1.24
1993	721	8	218	405	8	639	0.89
1994	230	7	36	16	0	59	0.26
1995	98	33	32	98	0	163	1.65
1996	159	30	176	760	0	967	6.07
1997	371	13	1,543	610	0	2,166	5.84
1998	414	120	766	1,136	0	2,022	4.88
1999	61	72	99	163	0	334	5.50
2000	250	60	163	110	0	333	1.33
2001	1,917	18	364	256	0	638	0.33
2002	1,180	19	279	257	0	555	0.47
2003	1,192	23	183	440	0	646	0.54
2004	318	121	52	33	0	206	0.65
2005	464	79	173	127	0	378	0.81
2006	509	45	308	451	0	805	1.58
2007	523	57	645	493	0	1,194	2.28
2008	504	239	461	465	0	1,165	2.31
2009	213	60	143	44	0	247	1.16
2010	467	172	326	173	0	671	1.44
2011	1,118	71	646	236	0	953	0.85
2012	789	41	261	253	0	555	0.70
2013	619	76	412	53	0	542	0.88
2014	385	103	87	37	0	227	0.59
2015	819	7	61	120	0	188	0.23
2016	542	12	195	84	0	291	0.54
2017	703	14	144	280^{1}		438^{1}	0.62^{1}
2018	134	27	457^{1}				
2019	107	40^{1}					
2020	319						
2021	179						
2022	376^{1}						
Mean	532	51	270	279	1	596	1.54
1 Drolimino							

1. Preliminary.

Table 7. Adult-to-adult productivity indices for Naches/American aggregate (wild/natural) population.

Brood	Estimated	Е	stimated Ya	kima R. Mo	outh Returns		Returns/
Year	Spawners	Age-3	Age-4	Age-5	Age-6	Total	Spawner
1984	570	164	1,109	1,080	0	2,354	4.13
1985	1,020	213	667	931	0	1,811	1.77
1986	4,123	103	670	852	31	1,657	0.40
1987	1,729	39	231	400	0	669	0.39
1988	2,167	51	815	1,557	11	2,434	1.12
1989	1,517	39	332	371	0	741	0.49
1990	1,380	40	326	168	0	533	0.39
1991	1,121	10	32	144	127	314	0.28
1992	1,188	52	1,034	661	0	1,747	1.47
1993	1,865	53	603	817	17	1,489	0.80
1994	704	21	160	167	0	348	0.49
1995	223	73	201	498	0	771	3.46
1996	1,047	209	4,010	2,359	0	6,579	6.29
1997	1,133	220	4,644	1,377	0	6,241	5.51
1998	917	364	2,167	2,316	12	4,859	5.30
1999	418^{1}	185	369	279	0	833	1.99
2000	4,112	131	2,286	346	0	2,762	0.67
2001	5,829	144	1,598	785	0	2,526	0.43
2002	3,041	78	975	443	0	1,496	0.49
2003	2,592	75	387	1,028	0	1,489	0.57
2004	2,515	227	514	232	0	973	0.39
2005	1,904	246	845	268	0	1,359	0.71
2006	1,672	237	1,120	759	0	2,117	1.27
2007	986	182	2,239	1,033	0	3,454	3.50
2008	1,578	653	1,262	803	0	2,718	1.72
2009	1,117	144	542	116	0	802	0.72
2010	1,491	381	972	412	0	1,766	1.18
2011	3,060	208	1,693	559	0	2,459	0.80
2012	1,900	105	662	540	0	1,307	0.69
2013	1,369	186	1,046	226	0	1,459	1.07
2014	1,130	245	439	49	0	733	0.65
2015	2,103	33	96	355	0	484	0.23
2016	1,332	18	688	169	0	875	0.66
2017	1,673	46	372	418^{2}		837^{2}	0.50^{2}
2018	634	64	811^{2}				
2019	158	66^{2}					
2020	1,059						
2021	594						
2022	$1,249^2$						
Mean	1,647	147	1,026	662	6	1,853	1.49

^{1.} The geometric mean jack (age-3) proportion of spawning escapement from 1999-2022 was 0.09.

^{2.} Preliminary.

Estimated spawners at the CESRF are the total number of wild/natural fish collected at Roza Dam and taken to the CESRF for production brood stock. Total returns are based on the information compiled in Table 3 and at Roza dam sampling operations. Age composition for CESRF fish is estimated using scales and PIT tag detections from CESRF fish sampled passing upstream through the Roza Dam adult monitoring facility.

Table 8. Adult-to-adult productivity for Cle Elum SRF spring Chinook.

Brood	Estimated	Estimate	d Yakima	R. Mouth R	eturns	Returns/
Year	Spawners	Age-3	Age-4	Age-5	Total	Spawner
1997	261	741	7,753	176	8,670	33.22
1998	408	1,242	7,939	602	9,782	23.98
1999	738^{1}	134	714	16	864	1.17
2000	567	1,103	3,647	70	4,819	8.50
2001	595	396	845	9	1,251	2.10
2002	629	345	1,886	69	2,300	3.66
2003	441	121	800	12	932	2.11
2004	597	805	3,101	116	4,022	6.74
2005	510	1,305	3,052	21	4,378	8.58
2006	419	3,038	5,812	264	9,114	21.75
2007	449	1,277	5,174	108	6,558	14.61
2008	457	2,344	4,567	65	6,976	15.27
2009	486	461	2,663	58	3,181	6.55
2010	336	1,495	3,183	30	4,707	14.01
2011	377	1,233	2,340	34	3,607	9.57
2012	374	221	1,492	10	1,723	4.61
2013	398	802	1,993	0	2,795	7.02
2014	384	1,008	1,447	7	2,463	6.41
2015	442	314	877	0	1,191	2.70
2016	376	287	771	41	1,099	2.92
2017	382	349	1,188	0^2	$1,537^2$	4.02^{2}
2018	294	546	$1,701^2$		$2,248^2$	7.65^2
2019	306	450^{2}				
2020	405					
2021	412					
2022	377^{2}					
Mean	439	870	2,861	81	3,828	6.723

^{1. 357} or 48% of these fish were jacks.

^{2.} Preliminary.

^{3.} Geometric mean.

Age Composition

Comparisons of the age composition in the Roza adult monitoring facility (RAMF) samples and spawning ground carcass recovery samples show that older, larger fish are recovered as carcasses on the spawning grounds at significantly higher rates than younger, smaller fish (Knudsen et al. 2003 and Knudsen et al. 2004). Based on historical scale-sampled carcass recoveries between 1986 and 2022 (there were no or very few carcass recoveries in 2017 through 2020), age composition of American River spring Chinook has averaged 2, 47, 52, and 1 percent age-3, -4, -5, and -6, respectively (Table 9). Naches system spring Chinook averaged 2, 61, 36 and 0.5 percent age-3, -4, -5 and -6, respectively (Table 10). The upper Yakima River natural origin fish averaged 8, 88, and 4 percent age-3, -4, and -5, respectively (Table 11). While these ages are biased toward the older age classes, we believe the bias is approximately equal across populations and is a good relative indicator of differences in age composition between populations. The data show distinct differences with the American River population having the oldest age of maturation, followed closely by the Naches system and then the upper Yakima River which has significantly more age-3's, fewer age-5's and no age-6 fish.

Table 9. Percentage by sex and age of American River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present.

Return			Males					Females				То	tal	
Year	3	4	5	6	n	3	4	5	6	n	3	4	5	6
1986		23.8	76.2		21		8.9	86.7	4.4	45		13.6	83.3	3.0
1987		70.8	25.0	4.2	24		42.9	57.1		21		57.8	40.0	2.2
1988			100.0		1		100.0			1		33.3	66.7	
1989		39.6	60.4		48		10.0	90.0		50		24.5	75.5	
1990	2.5	25.0	72.5		40		28.3	71.7		46	1.2	26.7	72.1	
1991		23.8	76.2		42		13.3	86.7		60		17.6	82.4	
1992		71.2	23.1	5.8	52		45.8	54.2		48		59.0	38.0	3.0
1993	4.8	14.3	81.0		21		8.0	92.0		75	1.0	9.4	89.6	
1994		44.4	55.6		18		50.0	46.7	3.3	30		49.0	49.0	2.0
1995	14.3	14.3	71.4		7			100.0		13	5.0	5.0	90.0	
1996		100.0			2		83.3	16.7		6		87.5	12.5	
1997		40.0	60.0		5		22.2	64.4	13.3	45		24.0	64.0	12.0
1998		12.1	87.9		33		6.6	93.4		76		8.3	91.7	
1999		100.0			2		40.0	40.0	20.0	5		57.1	28.6	14.3
2000		66.7	33.3		15		61.5	38.5		13		64.3	35.7	
2001		65.6	34.4		90		67.9	32.1		106		67.0	33.0	
2002	1.7	53.4	44.8		58		56.4	43.6		110	0.6	55.4	44.0	
2003		8.1	91.9		74		7.9	92.1		151		8.0	92.0	
2004		100.0			3		20.0	80.0		5		50.0	50.0	
2005		64.7	35.3		17		84.0	16.0		25		76.7	23.3	
2006		61.5	38.5		13		48.6	51.4		35		52.1	47.9	
2007	10.5	31.6	57.9		19		43.8	56.3		48	3.0	40.3	56.7	
2008		8.7	91.3		23		11.9	88.1		42		10.6	89.4	
2009	30.8	69.2			13		75.0	25.0		16	13.8	72.4	13.8	
2010	6.3	56.3	37.5		16		75.0	25.0		32	2.0	69.4	28.6	
2011		40.0	60.0		10		63.2	36.8		19		58.8	41.2	
2012		50.0	50.0		14		47.8	52.2		16		48.3	51.7	
2013	11.1	11.1	77.8		9		26.9	73.1		26	2.9	22.9	74.3	
2014	5.6	77.8	16.7		18		90.9	9.1		33	2.0	86.3	11.8	
2015	7.4	74.1	18.5		27		78.3	21.7		46	2.7	76.7	20.5	
2016		28.6	71.4		14		65.4	34.6		26		52.5	47.5	
2017						No	carcasses	were sam	pled					
2018						No	carcasses	were sam	pled					
2019					On	ly 1 card	ass sample	ed due to	low run si	ze				
2020	50.0	50.0			2		100.0			3	20.0	80.0		
2021		62.5	37.5		8		63.6	36.4		11		63.2	36.8	
2022		76.9	23.1		13		76.2	23.8		21		77.1	22.9	
Mean	4.3	48.1	47.3	0.3			47.8	51.0	1.2		1.6	47.2	51.6	1.1

Table 10. Percentage by sex and age of Naches River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present.

Return			Males					Females				То	tal	
Year	3	4	5	6	n	3	4	5	6	n	3	4	5	6
1986	5.0	60.0	30.0	5.0	20		33.3	64.3	2.4	42	1.6	41.9	53.2	3.2
1987	5.9	76.5	11.8	5.9	17		69.0	31.0		42	1.7	71.7	25.0	1.7
1988		50.0	50.0		8	5.6	38.9	55.6		18	3.3	46.7	50.0	
1989		70.2	29.8		47		34.9	63.5	1.6	63		50.0	49.1	0.9
1990	9.1	60.6	30.3		33	10.7	57.1	32.1		28	11.1	57.1	31.7	
1991	4.3	52.2	43.5		23		13.3	86.7		45	1.5	26.5	72.1	
1992	4.0	80.0	12.0	4.0	25		70.6	29.4		34	1.7	75.0	21.7	1.7
1993		42.3	57.7		26		18.6	81.4		43		28.6	71.4	
1994		50.0	50.0		4		30.0	70.0		10		35.7	64.3	
1995		25.0	75.0		4		28.6	71.4		7		33.3	66.7	
1996		100.0			17		75.0	25.0		16		87.9	12.1	
1997	2.9	70.6	20.6	5.9	34		57.1	36.7	6.1	49	1.2	62.7	30.1	6.0
1998		29.4	70.6		17		27.9	72.1		43		30.6	69.4	
1999	12.5	62.5	25.0		8		33.3	66.7		9	5.9	47.1	47.1	
2000	1.7	94.9	3.4		59		92.2	7.8		77	0.7	93.4	5.9	
2001	1.7	72.9	25.4		59		61.0	39.0		118	0.6	65.2	34.3	
2002	2.1	78.7	19.1		47		63.3	36.7		98	0.7	66.9	32.4	
2003	7.8	25.0	67.2		64	1.1	18.9	80.0		95	3.8	21.4	74.8	
2004	7.5	87.5	5.0		40		91.3	8.7		92	2.3	89.5	8.3	
2005		81.8	18.2		11		83.8	16.2		37		83.7	16.3	
2006		61.5	38.5		13		61.5	38.5		13		61.5	38.5	
2007		75.0	25.0		4		57.9	42.1		19		60.9	39.1	
2008	36.4	45.5	18.2		11		87.0	13.0		23	11.8	73.5	14.7	
2009	7.1	71.4	21.4		14		76.9	23.1		26	2.4	73.2	24.4	
2010	4.5	90.9	4.5		22		83.3	16.7		42	2.9	85.3	11.8	
2011	11.5	80.8	7.7		26		78.9	21.1		19	6.3	81.3	12.5	
2012	11.8	41.2	47.1		17		64.4	33.3		45	4.8	58.7	36.5	
2013	15.4	53.8	30.8		13		56.3	43.8		16	6.7	56.7	36.7	
2014		86.7	13.3		15		92.3	7.7		26		90.9	9.1	
2015		100.0			10		75.0	25.0		16		84.6	15.4	
2016		25.0	75.0		4		64.3	35.7		14		57.9	42.1	
2017						No c	arcasses v	were samp	oled					
2018								were sam						
2019						No c	arcasses v	were samp	oled					
2020		100.0			1		100.0	1		1		100.0		
2021					Only	1 male ca	ırcass san	npled; age	not avail	able				
2022		100.0			1			1 , 0						
Mean	4.9	64.6	29.9	0.7		0.6	57.9	41.1	0.3		2.3	61.3	36.0	0.4

Table 11. Percentage by sex and age of upper Yakima River wild/natural spring Chinook carcasses sampled on the spawning grounds and sample size (n), 1986-present.

Return		Ma	les			Fema	ales			Total	
Year	3	4	5	n	3	4	5	n	3	4	5
1986		100.0		12		94.1	5.9	51		95.2	4.8
1987	10.8	81.5	7.7	65		77.8	22.2	126	3.7	79.1	17.3
1988	22.5	70.0	7.5	40	10.4	75.0	14.6	48	15.6	73.3	11.1
1989	0.8	93.1	6.2	130	0.4	95.5	4.1	246	0.5	94.7	4.8
1990	6.3	88.4	5.3	95	2.1	94.8	3.1	194	3.4	92.8	3.8
1991	9.1	87.3	3.6	55		89.2	10.8	111	3.0	88.6	8.4
1992	2.4	91.6	6.0	167		98.1	1.9	315	0.8	95.9	3.3
1993	4.0	90.0	6.0	50	0.9	92.0	7.1	112	1.9	91.4	6.8
1994		100.0		16		98.0	2.0	50		98.5	1.5
1995	20.0	80.0		5		100.0		12	5.6	94.4	
1996	9.1	89.6	1.3	154	0.7	98.2	1.1	282	3.7	95.2	1.1
1997		96.7	3.3	61		96.3	3.7	136		96.4	3.6
1998	14.3	85.7		21	5.3	86.8	7.9	38	8.5	86.4	5.1
1999	61.8	38.2		34		94.4	5.6	36	31.0	66.2	2.8
2000	2.8	97.2		72		100.0		219	1.0	99.0	
2001	2.7	89.2	8.1	37		83.6	16.4	122	0.6	85.0	14.4
2002	2.4	58.5	39.0	41	3.6	87.5	8.9	56	5.1	73.7	21.2
2003	60.5	39.5		38	4.3	82.6	13.0	23	39.3	55.7	4.9
2004	6.5	93.5		108	0.0	99.5	0.5	198	2.3	97.4	0.3
2005	9.2	90.0		120	1.4	97.2	1.4	214	4.2	94.7	1.2
2006	23.7	74.6		59	2.3	96.5	1.2	86	11.0	87.6	1.4
2007	17.1	82.9		76	0.9	93.8	5.4	112	7.4	89.4	3.2
2008	11.8	88.2		34	0.0	95.8	4.2	24	6.9	91.4	1.7
2009	47.7	52.3		111	2.2	95.6	2.2	45	34.6	64.7	0.6
2010	27.7	72.3		47		100.0		71	11.0	89.0	
2011	37.5	62.5		16		100.0		27	13.6	86.4	
2012	25.0	75.0		8	7.7	92.3		13	14.3	85.7	
2013						100.0		8		100.0	
2014	3.3	96.7		30		100.0		59	1.1	98.9	
2015			carcass s	surveys d	iscontinue	d as Roza	samples	deemed a	dequate		
Mean	15.7	80.9	3.4		1.5	93.6	4.9		7.9	87.8	4.3

Carcasses from upper Yakima River CESRF origin fish allowed to spawn naturally have also been sampled since age-4 adults began returning in 2001. These fish averaged 13, 85, and 1 percent age-3, -4, and -5, respectively (Table 12) from 2001-2014 compared to 8, 88, and 4.3 percent respectively for their wild/natural counterparts in the upper Yakima for the same years (Table 11). The observed difference in age distribution between wild/natural and CESRF sampled on the spawning grounds may be due in part to the carcass recovery bias described above. A better comparison of age distribution between upper Yakima wild/natural and CESRF fish is from samples collected at Roza Dam which are displayed in Tables 13 and 14. However, it must be noted that jacks (age-3 males) were collected at Roza in proportion to run size from 1997 to 1999, but from 2000-present we have attempted to collect them at their mean brood representation rate (approximately 7% of the spawning population). Age-3 females do occur rarely in the Upper Yakima population, but it is likely that the data in Table 13 slightly over-represent the proportion of age-3 females due to human error associated with scale collection, handling, processing, and management and entry of these data.

Table 12. Percentage by sex and age of upper Yakima River CESRF spring Chinook carcasses sampled on the spawning grounds and sample size (n), 2001-present.

Return		Ma	les			Fema	ales		Total		
Year	3	4	5	n	3	4	5	n	3	4	5
2001	23.5	76.5		34	0.9	99.1		108	6.3	93.7	
2002	8.0	81.3	10.7	75		88.6	11.4	140	2.8	86.2	11.1
2003	100.0			1		100.0		1	50.0	50.0	
2004	9.5	90.5		21		98.0	2.0	51	2.8	95.8	1.4
2005	42.9	57.1		21		90.9	4.5	22	23.3	74.4	2.3
2006	26.7	73.3		15		100.0		43	6.9	93.1	
2007	66.7	33.3		6		100.0		11	23.5	76.5	
2008				0		100.0		1		100.0	
2009	60.0	40.0		5				0	60.0	40.0	
2010	28.6	71.4		7		100.0		11	11.1	88.9	
2011	37.5	62.5		16	4.5	95.5		22	18.4	81.6	
2012		100.0		4	5.3	94.7		19	4.3	95.7	
2013		100.0		1		100.0		7		100.0	
2014		100.0		20		100.0		62	1.2	98.8	
2015			carcass s	urveys di	scontinue	ed as Roza	samples c	leemed ac	dequate		
Mean ¹	25.3	73.8	0.9		0.5	97.2	1.8		13.4	85.4	1.2

^{1.} Excludes years where sample size < 5.

Table 13. Percentage by sex and age of upper Yakima River wild/natural spring Chinook collected for brood stock at Roza Dam and sample size (n), 1997-present.

Return					Fema	ales		Total			
Year	3	4	5	n	3	4	5	n	3	4	5
1997	4.5	92.0	3.4	88		94.6	5.4	111	2.0	93.5	4.5
1998	22.4	73.1	4.5	134		91.6	8.4	179	9.6	83.7	6.7
1999	71.1	26.1	2.8	425		92.6	7.4	215	48.8	47.0	4.2
2000	17.8	81.7	0.4	230		98.7	1.3	313	7.5	91.5	0.9
2001	12.4	77.4	10.3	234	0.9	90.5	8.5	328	5.7	85.2	9.2
2002	16.4	78.3	5.3	226	0.6	94.8	4.7	343	6.9	88.2	4.9
2003	27.4	60.2	12.4	201		83.3	16.7	228	12.8	72.6	14.7
2004	15.1	84.5	0.4	239	0.3	99.0	0.7	305	6.8	92.6	0.6
2005	15.5	82.3	2.2	181	0.4	97.1	2.5	276	6.3	91.2	2.4
2006	11.1	77.4	11.5	226		89.4	10.6	255	5.2	83.8	11.0
2007	13.6	74.7	11.7	162		87.8	12.2	255	5.3	82.7	12.0
2008	20.0	77.4	2.6	190		95.6	4.4	252	8.6	87.8	3.6
2009	17.4	81.2	1.4	207	0.8	96.1	3.1	258	8.2	89.5	2.4
2010	20.0	79.4	0.6	155	0.4	99.3	0.4	285	7.3	92.3	0.5
2011	18.1	81.3	0.5	182	0.8	95.3	3.8	236	8.4	89.2	2.4
2012	12.5	86.5	1.0	104		97.4	2.6	189	4.4	93.5	2.0
2013	18.0	77.6	4.3	161	0.0	96.2	3.8	183	8.4	87.5	4.1
2014	20.9	76.3	2.8	177	0.0	97.8	2.2	184	10.2	87.3	2.5
2015	9.3	89.4	1.2	161	0.0	98.7	1.3	231	3.8	94.9	1.3
2016	12.5	81.6	5.9	152	0.5	95.2	4.3	210	5.5	89.5	5.0
2017	13.7	84.9	1.4	146	1.0	97.9	1.0	194	6.5	92.4	1.2
2018	17.6	79.4	2.9	102	0.0	95.8	4.2	144	7.3	89.0	3.7
2019	13.2	86.8	0.0	76	0.7	97.3	2.0	149	4.9	93.8	1.3
2020	9.6	89.6	0.8	125	0.0	97.8	2.2	183	3.9	94.5	1.6
2021	6.3	91.9	1.9	160	0.4	93.0	6.6	227	2.8	92.5	4.7
2022	7.8	91.3	0.9	115	0.0	99.4	0.6	171	3.1	96.2	0.7
Mean	17.1	79.3	3.6		0.3	95.1	4.6		8.1	87.8	4.2

Table 14. Percentage by sex and age of upper Yakima River CESRF spring Chinook collected for research or brood stock at Roza Dam and sample size (n), 2001-present.

Return		Mal	es			Fema	ales			Total	
Year	3	4	5	n	3	4	5	n	3	4	5
2001	12.5	87.5		40		100.0		75	5.1	94.9	
2002	14.7	83.8	1.5	68		98.3	1.7	115	5.5	92.9	1.6
2003	36.1	34.7	29.2	72		61.2	38.8	67	18.7	47.5	33.8
2004	19.6	80.4		46		100.0		60	8.5	91.5	
2005	17.8	75.6	6.7	45		88.1	11.9	59	7.7	82.7	9.6
2006	18.3	80.0	1.7	60		100.0		65	8.8	90.4	0.8
2007	33.3	60.8	5.9	51		87.5	12.5	56	15.9	74.8	9.3
2008	50.0	50.0		40		100.0		56	20.8	79.2	
2009	25.4	71.2	3.4	59	1.2	97.6	1.2	84	11.2	86.7	2.1
2010	27.9	72.1		61		99.0	1.0	100	10.6	88.8	0.6
2011	21.2	72.7	6.1	66	0.9	97.2	1.9	107	8.7	87.9	3.5
2012	13.0	85.2	1.9	54		97.0	3.0	101	4.5	92.9	2.6
2013	17.9	80.6	1.5	67	1.1	96.7	2.2	92	8.2	89.9	1.9
2014	31.9	66.0	2.1	47	0.0	100.0	0.0	33	18.8	80.0	1.3
2015	33.3	66.7	0.0	27	0.0	97.9	2.1	48	12.0	86.7	1.3
2016	26.5	69.4	4.1	49	0.0	100.0	0.0	47	13.5	84.4	2.1
2017	43.6	56.4	0.0	39	0.0	100.0	0.0	66	16.2	83.8	
2018	28.9	71.1	0.0	38	0.0	100.0	0.0	38	14.5	85.5	
2019	26.3	73.7	0.0	19	3.5	96.5	0.0	57	9.2	90.8	
2020	12.5	87.5	0.0	8	0.0	100.0	0.0	14	4.5	95.5	
2021^{1}				0	0.0	50.0	50.0	2	0.0	50.0	50.0
2022^{1}											
Mean	25.5	71.3	3.2		0.3	95.9	3.8		11.1	85.3	3.5

¹ 2 fish sampled in 2021; 0 fish in 2022.

Sex Composition

In the American River, the mean proportion of males to females in wild/natural carcasses sampled on the spawning grounds from 1986-2022 was 40:60 for age-4 and 34:66 for age-5 spring Chinook (Table 15). In the Naches River, the mean proportion of males to females was 41:59 for age-4 and 27:73 for age-5 fish (Table 16). In the upper Yakima River, the mean proportion of males to females was 33:67 for age-4 and 23:77 for age-5 fish (Table 17). Collection of carcass samples from the spawning grounds throughout the Yakima Basin did not occur in 2017-2019 and very few carcasses were sampled in 2020.

For upper Yakima fish collected at Roza Dam for brood stock or research purposes from 1997-2020, the mean proportion of males to females was 38:62 and 35:65 for age-4 fish from the wild/natural and CESRF populations, respectively (Tables 19 and 20). For these same samples, the mean proportion of males to females was 35:65 and 41:59 for age-5 fish from the wild/natural and CESRF populations (excluding years with very small age-5 sample sizes), respectively (Tables 19 and 20). For adult fish, the mean proportion of males to females in spawning ground carcass recoveries was substantially lower than the ratio found at RAMF (Tables 17 and 19), indicating that sex ratios estimated from hatchery origin carcass recoveries were biased due to female carcasses being recovered at higher rates than male carcasses (Knudsen et al, 2003 and 2004). Again, despite these biases, we believe these data are good relative indicators of differences in sex composition between populations and between years.

Sample sizes for Tables 15-20 were given in Tables 9-14. As noted earlier, few age-6 fish are found in carcass surveys and those that have been found were located in the American and Naches systems. The data indicate that age-3 females may occasionally occur in the upper Yakima and, to a lesser extent, the Naches systems.

Table 15. Percent of American River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present.

Return	Age	-3	Age	:-4	Age	:-5	Age	2 -6
Year	M	F	M	F	M	F	M	F
1986			55.6	44.4	29.1	70.9		100.0
1987			65.4	34.6	33.3	66.7	100.0	
1988			0.0	100.0	100.0	0.0		
1989			79.2	20.8	39.2	60.8		
1990	100.0		43.5	56.5	46.8	53.2		
1991			55.6	44.4	38.1	61.9		
1992			62.7	37.3	31.6	68.4	100.0	
1993	100.0		33.3	66.7	19.8	80.2		
1994			34.8	65.2	41.7	58.3		100.0
1995	100.0		100.0	0.0	27.8	72.2		
1996			28.6	71.4	0.0	100.0		
1997			16.7	83.3	9.4	90.6		100.0
1998			44.4	55.6	29.0	71.0		
1999			50.0	50.0	0.0	100.0		100.0
2000			55.6	44.4	50.0	50.0		
2001			45.0	55.0	47.7	52.3		
2002	100.0		33.3	66.7	35.1	64.9		
2003			33.3	66.7	32.9	67.1		
2004			75.0	25.0	0.0	100.0		
2005			34.4	65.6	60.0	40.0		
2006			32.0	68.0	21.7	78.3		
2007	100.0		22.2	77.8	28.9	71.1		
2008			28.6	71.4	36.2	63.8		
2009			42.9	57.1	0.0	100.0		
2010			27.3	72.7	42.9	57.1		
2011			25.0	75.0	46.2	53.8		
2012			24.1	75.9	22.6	77.4		
2013			12.5	87.5	26.9	73.1		
2014			31.8	68.2	50.0	50.0		
2015			35.7	64.3	33.3	66.7		
2016			19.0	81.0	52.6	47.4		
2017			No	carcasses	were sample	ed		
2018			No	carcasses	were sample	ed		
2019				carcass sa	ampled; low i	eturn		
2020	100.0		25.0	75.0				
2021			41.7	58.3	42.9	57.1		
2022			38.5	61.5	37.5	62.5		
mean			39.8	60.2	33.7	66.3		

Table 16. Percent of Naches River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present.

Return	Age	e-3	Age	-4	Age	-5	Age	e-6
Year	M	F	M	F	M	F	M	F
1986	100.0		46.2	53.8	18.2	81.8	50.0	50.0
1987	100.0		31.0	69.0	13.3	86.7	100.0	
1988		100.0	36.4	63.6	28.6	71.4		
1989			60.0	40.0	25.9	74.1		100.0
1990	50.0	50.0	55.6	44.4	52.6	47.4		
1991	100.0		66.7	33.3	20.4	79.6		
1992	100.0		45.5	54.5	23.1	76.9	100.0	
1993			57.9	42.1	30.0	70.0		
1994			40.0	60.0	22.2	77.8		
1995			33.3	66.7	37.5	62.5		
1996			58.6	41.4		100.0		
1997	100.0		46.2	53.8	28.0	72.0	40.0	60.0
1998			29.4	70.6	27.9	72.1		
1999	100.0		62.5	37.5	25.0	75.0		
2000	100.0		44.1	55.9	25.0	75.0		
2001	100.0		37.4	62.6	24.6	75.4		
2002	100.0		37.4	62.6	20.0	80.0		
2003	83.3	16.7	47.1	52.9	36.1	63.9		
2004	100.0		29.4	70.6	20.0	80.0		
2005			22.5	77.5	25.0	75.0		
2006			50.0	50.0	50.0	50.0		
2007			21.4	78.6	11.1	88.9		
2008	100.0		20.0	80.0	40.0	60.0		
2009	100.0		33.3	66.7	33.3	66.7		
2010	100.0		36.4	63.6	12.5	87.5		
2011	100.0		58.3	41.7	33.3	66.7		
2012	66.7	33.3	19.4	80.6	34.8	65.2		
2013	100.0		43.8	56.3	36.4	63.6		
2014			35.1	64.9	50.0	50.0		
2015			45.5	54.5		100.0		
2016			10.0	90.0	37.5	62.5		
2017					were sample			
2018			No	carcasses	were sample	d		
2019					were sample	d		
2020			50.0	50.0				
2021			Only 1 ma	le carcass san	npled; age not a	vailable		
2022				1 male carca	ss sampled; age			
mean			40.6	59.4	27.2	72.8		

Table 17. Percent of Upper Yakima River wild/natural spring Chinook carcasses sampled on the spawning grounds by age and sex, 1986-present.

Return	Age	-3	Ag	e-4	Age	:-5
Year	M	F	M	F	M	F
1986			20.0	80.0		100.0
1987	100.0		35.1	64.9	15.2	84.8
1988	64.3	35.7	43.8	56.3	30.0	70.0
1989	50.0	50.0	34.0	66.0	44.4	55.6
1990	60.0	40.0	31.3	68.7	45.5	54.5
1991	100.0		32.7	67.3	14.3	85.7
1992	100.0		33.1	66.9	62.5	37.5
1993	66.7	33.3	30.4	69.6	27.3	72.7
1994			24.6	75.4		100.0
1995	100.0		25.0	75.0		
1996	87.5	12.5	33.3	66.7	40.0	60.0
1997			31.1	68.9	28.6	71.4
1998	60.0	40.0	35.3	64.7		100.0
1999	100.0		27.7	72.3		100.0
2000	100.0		24.2	75.8		
2001	100.0		24.4	75.6	13.0	87.0
2002	33.3	66.7	32.9	67.1	76.2	23.8
2003	95.8	4.2	44.1	55.9		100.0
2004	100.0		33.9	66.1		100.0
2005	78.6	21.4	34.2	65.8	25.0	75.0
2006	87.5	12.5	34.6	65.4	50.0	50.0
2007	92.9	7.1	37.5	62.5		100.0
2008	100.0		56.6	43.4		100.0
2009	98.1	1.9	57.4	42.6		100.0
2010	100.0		32.4	67.6		
2011	100.0		27.0	73.0		
2012	66.7	33.3	33.3	66.7		
2013				100.0		
2014	100.0	0.0	33.0	67.0		
2015	carcass s	urveys dis	scontinued as	Roza sam	ples deemed ad	lequate
mean	85.7	14.3	33.0	67.0	22.5	77.5

Table 18. Percent of upper Yakima River CESRF spring Chinook carcasses sampled on the spawning grounds by age and sex, 2001-present.

Return	Age	-3	Age	-4	Age-5		
Year	М	F	М	F	М	F	
2001	88.9	11.1	19.5	80.5			
2002	100.0		33.0	67.0	33.3	66.7	
2003	100.0			100.0			
2004	100.0		27.5	72.5		100.0	
2005	90.0	10.0	37.5	62.5		100.0	
2006	100.0		20.4	79.6			
2007	100.0		15.4	84.6			
2008				100.0			
2009	100.0		100.0				
2010	100.0		31.3	68.8			
2011	85.7	14.3	32.3	67.7			
2012			18.2	81.8			
2013			12.5	87.5			
2014			24.4	75.6			
2015	carcass	surveys dis	continued as	Roza samp	les deemed ad	lequate	
mean	96.5	3.5	26.6	73.4			

Table 19. Percent of upper Yakima River wild/natural spring Chinook collected for brood stock at Roza Dam by age and sex, 1997-present.

Return	Age-	3	Age	e-4	Age	-5
Year	M	F	M	F	M	F
1997	100.0		43.5	56.5	33.3	66.7
1998	100.0		37.4	62.6	28.6	71.4
1999	100.0		35.8	64.2	42.9	57.1
2000	100.0		37.8	62.2	20.0	80.0
2001	90.6	9.4	37.9	62.1	46.2	53.8
2002	94.9	5.1	35.3	64.7	42.9	57.1
2003	100.0		38.9	61.1	39.7	60.3
2004	97.3	2.7	40.1	59.9	33.3	66.7
2005	96.6	3.4	35.7	64.3	36.4	63.6
2006	100.0		43.4	56.6	49.1	50.9
2007	100.0		35.1	64.9	38.0	62.0
2008	100.0		37.9	62.1	31.3	68.8
2009	94.7	5.3	40.4	59.6	27.3	72.7
2010	96.9	3.1	30.3	69.7	50.0	50.0
2011	94.3	5.7	39.7	60.3	10.0	90.0
2012	100.0		32.8	67.2	16.7	83.3
2013	100.0		41.5	58.5	50.0	50.0
2014	100.0		42.9	57.1	55.6	44.4
2015	100.0		38.7	61.3	40.0	60.0
2016	95.0	5.0	38.3	61.7	50.0	50.0
2017	90.9	9.1	39.5	60.5	50.0	50.0
2018	100.0		37.0	63.0	33.3	66.7
2019	90.9	9.1	31.3	68.7	0.0	100.0
2020	100.0		38.5	61.5	20.0	80.0
2021	90.9	9.1	41.1	58.9	16.7	83.3
2022	100.0		38.2	61.8	50.0	50.0
mean	97.4	2.6	38.0	62.0	35.0	65.0

Table 20. Percent of Upper Yakima River CESRF spring Chinook collected for research or brood stock at Roza Dam by age and sex, 2001-present.

Return	Age-	3	Ag	e-4	Ag	e-5
Year	M	F	M	F	M	F
2001	100.0	0.0	31.8	68.2		
2002	100.0	0.0	33.5	66.5	33.3	66.7
2003	100.0	0.0	37.9	62.1	44.7	55.3
2004	100.0	0.0	38.1	61.9		
2005	100.0	0.0	39.5	60.5	30.0	70.0
2006	100.0	0.0	42.5	57.5	100.0	
2007	100.0	0.0	38.8	61.3	30.0	70.0
2008	100.0	0.0	26.3	73.7		
2009	93.8	6.3	33.9	66.1	66.7	33.3
2010	100.0	0.0	30.8	69.2		100.0
2011	93.3	6.7	31.6	68.4	66.7	33.3
2012	100.0		31.9	68.1	25.0	75.0
2013	92.3	7.7	37.8	62.2	33.3	66.7
2014	100.0	0.0	48.4	51.6	100.0	0.0
2015	100.0	0.0	27.7	72.3		
2016	100.0	0.0	42.0	58.0	100.0	0.0
2017	100.0	0.0	25.0	75.0		
2018	100.0	0.0	41.5	58.5		
2019	71.4	28.6	20.3	79.7		
2020	100.0	0.0	33.3	66.7		
2021^{1}			0.0	100.0	0.0	100.0
2022^{1}						
mean	97.5	2.5	34.6	65.4	41.2	58.8

¹ 2 fish sampled in 2021; 0 fish in 2022.

Size at Age

Prior to 1996, samplers were instructed to collect mid-eye to hypural plate (MEHP) lengths from carcasses surveyed on the spawning grounds. From 1996 to present the method was changed and post-eye to hypural plate (POHP) lengths have been recorded. Mean POHP lengths averaged 39, 61, and 75 cm for age-3, -4, and -5 males, and averaged 63 and 72 cm for age-4 and -5 females, respectively, from carcasses sampled on the spawning grounds in the American River from 1996-2022 (Table 21). In the Naches River, mean POHP lengths averaged 42, 60, and 76 cm for age-3, -4, and -5 males, and averaged 61 and 72 cm for age-4 and -5 females, respectively (Table 22). For wild/natural spring Chinook sampled on the spawning grounds in the upper Yakima River, mean POHP lengths averaged 44, 60, and 72 cm for age-3, -4, and -5 males, and averaged 59 and 69 cm for age-4 and -5 females, respectively (Table 23). Beginning in 2012, carcass sampling in the Upper Yakima was scaled back considerably as large numbers of escaping fish are sampled at Roza Dam (Tables 27-28). From 2001-2022, CESRF fish returning to the upper Yakima have been generally smaller in size-at-age than their wild/natural counterparts (Tables 25-28).

Table 21. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of American River wild/natural spring Chinook

from carcasses sampled on the spawning grounds by sex and age, 1989-present.

irom carca	asses sall	ipicu oli	ше эрам		ales	sex and a	ge, 1707	pi eseni.			Fen	nales		
Return	A	ge 3	A	ge 4		ge 5	A	ge 6	А	ge 4		ge 5	A	ge 6
Year		MEHP		MEHP	Count	MEHP		MEHP		MEHP	Count	MEHP		MEHP
1989			19	61.1	29	77.4			5	63.0	45	73.5		
1990	1	41.0	10	63.6	29	77.3			13	62.5	33	73.6		
1991			10	59.5	32	77.1			8	65.1	52	73.4		
1992			37	60.6	12	76.2	3.0	86.7	22	64.1	26	76.4		
1993	1	47.0	3	64.0	17	80.2			6	63.7	69	75.5		
1994			8	67.3	10	83.0			15	70.8	14	76.4	1	85.0
1995	1	44.4	1	70.0	4	83.5					12	76.4		
		POHP		POHP		POHP		POHP		POHP		POHP		POHP
1996			2	56.3					5	59.0	1	67.0		
1997^{1}			2	62.0	1	63.0			4	62.8	14	64.4	5	71.0
1998			4	58.3	29	79.1			5	64.0	71	73.4		
1999			2	50.5					2	61.0	2	73.0	1	77.0
2000			10	57.9	5	83.2			8	63.9	5	76.2		
2001			59	65.9	31	77.6			72	63.6	34	73.0		
2002	1	40.0	31	63.0	26	77.3			62	64.4	48	74.7		
2003			6	63.0	68	79.4			12	64.3	139	76.7		
2004			3	56.0					1	58.0	4	77.5		
2005			11	60.6	6	80.2			21	62.6	4	74.8		
2006			8	60.8	5	75.4			17	61.8	18	71.7		
2007	2	37.0	6	62.8	11	76.5			21	60.0	27	73.3		
2008			2	67.5	21	83.1			5	67.4	37	78.9		
2009	4	44.0	9	68.3					12	62.6	4	69.8		
2010	1	38.0	9	70.1	6	75.7			24	65.1	8	73.0		
2011			4	65.5	6	82.8			12	65.8	7	75.9		
2012			7	64.1	7	77.3			22	63.7	24	74.3		
2013	1	34.0	1	56.0	7	70.1			7	65.7	18	70.3		
2014	1	36.0	14	61.1	3	66.7			30	61.2	3	63.3		
2015	2	42.0	20	63.4	5	77.4			36	61.3	10	71.2		
2016			4	65.0	10	71.5			17	59.7	9	67.6		
2017-19				No sample	S						samples			
2020	1	38.0	1	52.0					3	65.7				
2021			4	54.8	3	64.0			5	60.5	4	63.8		
2022			10	62.7	3	60.0			16	57.6	5	66.2		
Mean ²		38.6		61.1		74.7				62.6		71.7		74.0

¹Carcasses sampled in 1997 had a mix of MEHP and POHP lengths taken. Only POHP samples are given here. ²Mean of mean values for 1996-2021 post-eye to hypural plate lengths.

Table 22. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of Naches River wild/natural spring Chinook from

carcasses sampled on the spawning grounds by sex and age, 1989-present.

car casses s	штрто	on the sp			ales	ugo, 2>	os prese					Fen	nales			
Return	Ag	ge 3	Ag	ge 4	Ag	ge 5	Ag	ge 6	Ag	ge 3	Ag	ge 4	Ag	ge 5	Ag	ge 6
Year	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP
1989			33	58.4	14	77.5					22	61.7	40	73.2	1	75.0
1990	3	53.0	20	59.4	10	75.9			3	51.7	16	60.9	9	73.7		
1991	1	31.0	12	56.3	10	72.8					6	62.5	39	71.1		
1992	1	42.0	20	58.8	3	72.3	1.0	83.0			24	62.4	10	71.7		
1993			11	60.0	15	77.7					8	63.3	35	72.5		
1994			2	62.5	2	77.0					3	63.7	7	73.1		
1995			1	59.0	3	73.0					2	64.0	5	73.8		
		POHP		POHP		POHP		POHP		POHP		POHP		POHP		POHP
1996			17	58.1							12	60.3	4	69.6		
1997^{1}	1	39.0	24	59.8	4	71.5	2.0	78.0			28	60.0	15	68.6	1	75.0
1998			5	57.8	12	75.0					12	61.1	31	71.6		
1999	1	40.0	5	61.2	2	73.0					3	58.7	6	75.0		
2000	1	35.0	56	58.2	2	84.0					71	59.5	6	72.8		
2001	1	45.0	43	61.4	15	73.4					72	62.2	46	74.5		
2002	1	40.0	37	63.6	9	77.3					62	62.4	36	71.8		
2003	5	41.4	16	62.2	43	79.4			1	41.0	18	62.8	76	75.6		
2004	3	46.0	35	59.8	2	74.5					84	61.5	8	75.8		
2005			9	60.1	2	78.0					31	61.7	6	71.7		
2006			8	56.9	5	76.0					8	63.8	5	71.2		
2007			3	61.3	1	67.0					11	56.9	8	72.1		
2008	4	42.0	5	59.6	2	81.5					20	62.0	3	78.7		
2009	1	43.0	10	67.9	3	76.3					20	63.9	6	73.2		
2010	1	40.0	20	60.5	1	77.0					35	61.7	7	71.4		
2011	3	44.3	21	61.9	2	78.0					15	60.4	4	76.8		
2012	2	51.5	7	67.3	8	75.8			1	41.0	29	61.6	15	71.1		
2013	2	37.0	7	56.1	4	75.0					9	58.7	7	71.3		
2014			13	61.8	2	71.0					24	56.7	2	67.5		
2015			10	59.3							12	60.4	4	65.8		
2016			1	47.0	3	77.0					9	53.9	5	68.8		
2017-19					mples								mples			
2020			1	50.0							1	53.0				
2021		1 car	cass samj	pled; unkı	nown age	; POHP =	58.0									
2022			1	59.0												
Mean ²		41.9		60.1		75.8		78.0		41.0		60.5		72.1		75.0

¹Carcasses sampled in 1997 had a mix of MEHP and POHP lengths taken. Only POHP samples are given here.

² Mean of mean values for 1996-2016 post-eye to hypural plate lengths.

Table 23. Counts and mean mid-eye (MEHP) or post-orbital (POHP) to hypural plate lengths (cm) of upper Yakima River wild / natural spring Chinook from carcasses sampled on the spawning grounds by sex and age, 1986-present.

-			Ma	ales				Fen	nales				
Return	Ag	ge 3	Ag	ge 4	Ag	ge 5	Ag	Age 3		Age 4		Age 5	
Year	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	Count	MEHP	
1986			12	60.8					48	58.7	3	70.3	
1987	7	45.3	53	58.5	5	73.0			96	59.3	28	70.6	
1988	9	40.0	28	59.0	3	79.0	5	52.6	36	59.2	7	70.3	
1989	1	50.0	121	59.7	8	70.6	1	40.0	235	58.6	10	67.2	
1990	6	47.0	84	58.0	5	77.0	4	51.5	184	59.3	6	72.5	
1991	5	39.6	48	56.2	2	67.5			99	57.6	12	68.8	
1992	4	43.0	153	58.4	10	71.2			309	58.2	6	69.5	
1993	2	44.0	45	60.7	3	75.0	1	56.0	101	59.5	8	70.3	
1994			15	62.9					49	61.3	1	72.0	
1995	1	43.0	4	62.0					12	61.4	0		
		POHP		POHP		POHP		POHP		POHP		POHP	
1996	14	40.9	138	59.1	2	66.5	2	41.0	277	58.6	3	68.0	
1997			59	59.3	2	74.0			131	58.6	5	69.4	
1998	3	38.7	18	56.4			2	47.0	33	57.5	3	66.7	
1999	21	38.8	13	57.4					34	58.9	2	69.8	
2000	2	41.0	70	60.3					219	58.3	0		
2001	1	43.0	33	60.7	3	74.7			102	60.6	20	69.8	
2002	1	44.0	24	64.9	16	69.3	2	46.0	49	62.5	5	70.2	
2003	23	44.4	15	59.8					19	62.4	3	67.8	
2004	7	47.3	101	59.9					197	58.7	1	67.0	
2005	11	49.2	108	60.6	1	75.0	3	48.7	207	59.5	3	67.3	
2006	14	41.8	44	59.4	1	72.0	2	39.5	82	58.3	1	71.0	
2007	13	44.2	61	61.7					101	60.6	6	66.0	
2008	3	48.3	29	60.5					22	59.7	1	77.0	
2009	53	46.8	58	57.6			1	51.0	43	60.2	1	68.0	
2010	13	47.7	34	60.5					70	59.5			
2011	6	47.0	10	58.9					27	59.3			
2012	2	44.5	6	58.0			1	47.0	12	57.5			
2013			No sa	mples					8	56.6			
2014	1	45.0	29	61.2					59	61.3			
2015			ca	rcass surv	eys disc	ontinued as	s Roza samj	oles deem	ed adequ	ate			
Mean ¹		44.3		59.8		71.9		45.7		59.4		69.1	

¹ Mean of mean values for 1996-2014 post-eye to hypural plate lengths.

Table 24. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from carcasses sampled on the spawning grounds by sex and age, 2001-present.

			Ma	ales				Females							
Return	Ag	Age 3		Age 4		Age 5		Ag	e 3	Age 4		Age 5			
Year	Count	POHP	Count	POHP	Count	POHP		Count	POHP	Count	POHP	Count	POHP		
2001	8	40.5	25	59.0	1	69.5		1	41.0	107	59.0				
2002	6	47.7	61	61.2	8	68.9				124	60.6	16	71.2		
2003	1	42.0								1	69.0				
2004	2	52.0	19	60.8						50	57.9	1	68.0		
2005	8	41.8	12	59.9				1	46.0	20	59.6	1	72.0		
2006	4	42.3	11	54.0						43	57.0				
2007	4	44.3	2	58.5						11	60.1				
2008	0		0							1	58.0				
2009	3	47.7	2												
2010	2	44.0	5	61.8						11	55.5				
2011	6	40.7	10	59.1				1	46.0	21	59.0				
2012			4	63.0				1	50.0	18	57.3				
2013			1							7	53.6				
2014			20	60.8						62	59.0				
2015			car	cass surv	eys disco	ontinued a	s R	oza samj	oles deem	ed adequ	ıate				
Mean		44.3		59.8		69.2					58.9		70.4		

Table 25. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River wild/natural spring Chinook from carcasses sampled at the CESRF prior to spawning by sex and age, 1997-present.

	Males								Females							
Return	Ag	ge 3	Ag	ge 4	Ag	ge 5	Ag	ge 3	Ag	ge 4	Ag	ge 5				
Year	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP				
1997	4	39.7	81	59.7	3	73.3			105	60.5	6	68.9				
1998	28	43.0	95	57.3	6	67.0			161	59.2	15	65.6				
1999	124	41.4	75	59.5	10	64.6			199	60.4	16	67.4				
2000	19	42.0	145	59.0	1	77.0			263	59.4	3	69.4				
2001	17	42.9	115	59.6	14	74.1			196	60.5	19	69.8				
2002	23	42.1	113	60.6	5	72.9	1	36.6	233	61.2	9	70.9				
2003	37	42.7	92	60.4	19	73.7			164	61.4	31	69.4				
2004	18	42.4	108	58.9	1	67.8			225	58.3	2	66.5				
2005	19	42.1	113	60.0	2	67.3	1	42.6	223	59.8	5	67.8				
2006	17	41.0	82	56.7	20	70.4			197	57.8	24	68.1				
2007	20	44.6	108	58.8	17	67.6			181	59.4	24	67.2				
2008	17	45.5	121	59.6	4	71.1			209	59.7	11	68.4				
2009	16	44.4	122	61.5	3	69.3	1	50.4	206	60.3	6	68.0				
2010	9	45.0	88	61.5	1	71.2			192	60.9						
2011	11	47.5	91	60.3	1	75.3	1	52.5	182	60.2	4	72.9				
2012	13	43.7	83	59.8	1	62.4			178	59.3	5	66.6				
2013	18	45.8	112	59.6	7	70.0			161	58.9	6	69.7				
2014	27	43.3	112	61.3	5	70.0			173	59.9	4	63.1				
2015	8	41.2	110	59.6	2	71.7			167	59.9	2	70.5				
2016	16	45.9	110	61.4	8	68.9			159	60.4	7	68.0				
2017	18	43.2	115	61.0	2	66.0	2	47.7	167	62.1	2	64.9				
2018	17	40.5	77	59.2	3	66.0			132	58.9	6	62.9				
2019	6	39.8	55	55.2			1	39.5	120	56.2	1	63.5				
2020	12	39.7	105	55.9	1	71.1			173	55.9	4	62.3				
2021	8	40.5	92	56.0	2	65.9	1	53.9	171	56.8	14	60.7				
2022	9	41.2	92	57.0	1	61.0			150	56.7	1	58.5				
Mean		42.7		59.2		69.4				59.4		66.8				

Table~26.~Counts~and~mean~post-orbital~to~hypural~plate~(POHP)~lengths~(cm)~of~upper~Yakima~River~CESRF~spring~Chinook~from~carcasses~sampled~at~the~CESRF~prior~to~spawning~by~sex~and~age,~2001-the~carcasses~sampled~at~the~CESRF~prior~to~spawning~by~sex~and~age,~2001-the~carcasses~sampled~at~the~CESRF~prior~to~spawning~by~sex~and~age,~2001-the~carcasses~sampled~at~th

present.

•			Ma	ales				Females							
Return	Ag	ge 3	Ag	ge 4	Ag	ge 5		ge 3	Ag	ge 4	Ag	ge 5			
Year	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP			
2001			4	61.3					33	60.4					
2002	2	40.2	25	59.6					63	59.4	2	66.1			
2003	17	42.6	16	57.8	15	74.0			31	59.7	19	70.4			
2004	6	39.4	9	57.1					42	59.3					
2005	6	37.9	21	58.4	2	68.7			38	58.6	5	68.0			
2006^{1}			3	57.2					3	56.3					
2007	8	40.4	18	59.3	1	71.4			35	58.2	5	67.6			
2008	17	43.8	9	59.1					28	59.4					
2009	5	43.8	11	61.1					32	60.1	1	67.5			
2010	11	41.8	18	59.2					40	61.0					
2011	4	43.4	10	62.7	1	79.2			32	60.4	2	71.7			
2012	3	39.0	23	59.3	1	73.7			43	59.4	1	67.2			
2013	2	45.7	24	60.3					32	57.3					
2014	7	39.2	21	61.8	1	70.2			32	60.5					
2015	7	38.9	17	58.5					42	59.2	1	66.7			
2016	2	42.8	22	61.4	2	75.0			34	60.8					
2017	11	44.1	20	59.9					36	61.9					
2018	8	38.4	22	59.5					34	59.4					
2019	3	37.3	14	56.2					25	55.8					
2020	1	37.4	7	54.9					13	54.6					
2021^{1}									1	57.1					
2022^{1}															
Mean		40.9		59.2		73.2				59.0		68.2			

¹ Few length samples were collected for spawning or research in 2006, and 2021-2022.

Table 27. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River wild/natural spring Chinook from fish sampled at Roza Dam by sex¹ and age, 1997-present.

-	Males								Females					
Return	Ag	ge 3	Ag	ge 4	Ag	ge 5	Ag	ge 3	Ag	ge 4	Ag	ge 5		
Year	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP		
1997	4	39.6	81	60.6	2	73.3			121	60.5	10	70.6		
1998	36	42.4	108	58.3	11	67.7	1	58.5	201	59.4	13	67.0		
1999	350	40.7	80	59.4	11	67.5	2	46.8	256	60.3	19	68.3		
2000	40	41.3	145	60.5	1	77.0	1	46.0	354	60.2	4	72.1		
2001	32	42.9	111	61.9	28	73.8			371	61.2	24	70.7		
2002	43	41.6	146	61.2	21	71.4	2	52.5	379	60.7	8	70.3		
2003	54	43.3	52	64.6	18	75.3	1	51.0	262	61.9	45	71.2		
2004	41	43.4	121	61.1	1	69.0			394	59.4	2	69.5		
2005	35	43.2	134	61.1	5	74.2			307	60.8	6	68.3		
2006	27	41.3	77	59.1	22	72.6	1	47.0	336	58.8	27	69.5		
2007	31	42.9	83	60.8	18	69.8	1	50.0	280	60.5	34	69.7		
2008	38	45.8	101	61.7	8	72.4			293	60.7	8	69.1		
2009	36	45.3	125	63.4	4	71.5	3	52.7	297	61.9	8	69.9		
2010	39	43.7	129	62.6	1	74.0	1	51.0	298	62.8	1	70.0		
2011	42	46.7	154	61.2	3	77.3	2	53.0	235	61.9	10	75.3		
2012	27	43.6	113	60.5	1	63.0			202	60.3	5	68.0		
2013	31	45.4	132	59.9	8	70.6			181	59.8	7	70.6		
2014	38	44.7	138	62.2	5	72.2			181	61.2	4	65.5		
2015	16	44.0	150	61.2	3	72.0			245	61.2	3	71.7		
2016	21	46.0	130	62.3	10	71.4			210	61.6	10	69.8		
2017	21	43.3	128	61.3	2	66.5	2	48.0	195	62.5	2	66.0		
2018	21	40.9	86	59.3	3	67.3			140	59.2	7	64.4		
2019	11	40.9	67	57.7			1	42.0	148	58.6	4	70.3		
2020	13	41.7	127	58.5	1	75.0			192	58.3	4	66.3		
2021	11	42.5	146	59.1	3	67.7	1	57.0	215	59.7	16	64.6		
2022	9	40.7	112	59.6	1	65.0			179	59.4	1	62.0		
Mean		43.0		60.7		71.1		50.4		60.5		68.9		

¹ Sex determined by visual observation prior to 2010 and by ultrasound from 2010 to present.

Table 28. Counts and mean post-orbital to hypural plate (POHP) lengths (cm) of upper Yakima River CESRF spring Chinook from fish sampled at Roza Dam by \sec^1 and age, 2001-present.

	Males							Females					
Return	Ag	ge 3	Ag	ge 4	Ag	ge 5	Ag	ge 3	Ag	ge 4	Ag	ge 5	
Year	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP	Count	POHP	
2001	473	39.9	548	59.5			1	58.0	1795	59.2			
2002	26	38.7	383	59.5	19	67.7			1152	59.1	15	66.1	
2003	392	41.8	48	61.8	61	73.0	2	47.0	207	60.3	154	70.8	
2004	48	40.3	100	60.5			1	44.0	351	59.2	2	71.0	
2005	98	40.4	58	60.1	6	73.0			160	59.1	12	68.7	
2006	26	40.4	89	58.0					318	57.4	2	70.5	
2007	174	41.4	46	60.7	6	71.7	1	47.0	185	59.0	13	69.8	
2008	93	44.8	60	60.7			2	54.5	191	60.1	1	67.0	
2009	254	43.6	78	62.8	5	65.0	1	50.0	212	61.8	6	69.5	
2010	106	42.5	196	61.0	1	67.0	1	60.0	361	61.8	1	72.0	
2011	155	42.9	146	60.9	8	73.5	2	57.5	265	61.5	13	73.4	
2012	45	40.6	131	59.3	3	65.7	1	45.0	250	59.9	6	69.2	
2013	92	44.4	122	59.0	3	70.0			163	58.8	4	69.3	
2014	78	42.8	111	61.0	2	71.0			163	60.5	3	71.7	
2015	19	41.2	90	59.5					146	60.3	3	72.0	
2016	86	44.5	73	61.1	3	77.3	2	48.0	102	61.2	1	65.0	
2017	83	43.9	47	61.6					160	62.3	1	67.0	
2018	24	39.3	56	58.4			1	41.0	86	59.4			
2019	18	41.4	35	57.5			1	46.0	84	57.7	1	76.0	
2020	35	41.7	25	57.4					52	57.7			
2021	39	42.9	31	57.9	1	68.0	1	50.0	56	59.8	2	61.5	
2022	18	41.2	20	58.7					35	58.2			
Mean		41.7		59.9		70.2		49.8		59.7		69.5	

¹ Sex determined by visual observation prior to 2010 and by ultrasound from 2010 to present.

Migration Timing

Wild/natural spring Chinook adults returning to the upper Yakima River have generally shown earlier passage timing at Roza Dam than CESRF spring Chinook (Figures 2 and 3).

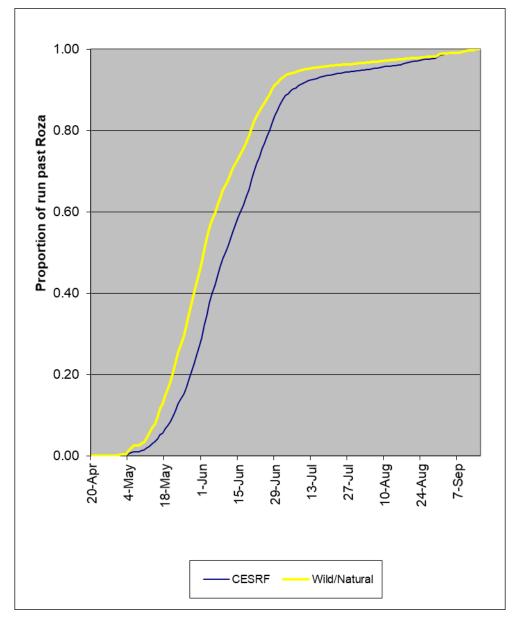


Figure 3. Proportionate passage timing at Roza Dam of wild/natural and CESRF adult spring Chinook (including jacks), 2013-2022.

Table 29. Comparison of 5%, median (50%), and 95% passage dates of wild/natural and CESRF adult spring Chinook (including jacks) at Roza Dam, 1997-Present.

	Wil	d/Natural Pas	sage	Cl	ESRF Passag	e
Year	5%	Median	95%	5%	Median	95%
1997	10-Jun	17-Jun	21-Jul			
1998	22-May	10-Jun	10-Jul			
1999	31-May	24-Jun	4-Aug			
2000	12-May	24-May	12-Jul	21-May ¹	15-Jun ¹	27-Jul ¹
2001	4-May	23-May	11-Jul	8-May	28-May	15-Jul
2002	16-May	10-Jun	6-Aug	20-May	13-Jun	12-Aug
2003	13-May	11-Jun	19-Aug	13-May	10-Jun	24-Aug
2004	4-May	20-May	24-Jun	5-May	22-May	26-Jun
2005	9-May	22-May	23-Jun	15-May	31-May	2-Jul
2006	1-Jun	14-Jun	18-Jul	3-Jun	18-Jun	19-Jul
2007	16-May	5-Jun	9-Jul	24-May	14-Jun	19-Jul
2008	27-May	9-Jun	9-Jul	31-May	17-Jun	14-Jul
2009	31-May	14-Jun	17-Jul	2-Jun	19-Jun	17-Jul
2010	11-May	30-May	5-Jul	12-May	2-Jun	9-Jul
2011	6-Jun	23-Jun	16-Jul	9-Jun	24-Jun	15-Jul
2012	30-May	14-Jun	9-Jul	30-May	13-Jun	8-Jul
2013	22-May	4-Jun	3-Jul	24-May	8-Jun	8-Jul
2014	15-May	1-Jun	2-Jul	18-May	5-Jun	8-Jul
2015^2	4-May	16-May	31-Aug	5-May	18-May	31-Aug
2016	17-May	29-May	28-Jun	21-May	4-Jun	20-Jul
2017	1-Jun	14-Jun	3-Jul	6-Jun	20-Jun	14-Jul
2018	1-Jun	8-Jun	18-Jul	2-Jun	14-Jun	16-Jul
2019	22-May	31-May	29-Jul	25-May	5-Jun	20-Aug
2020	21-May	11-Jun	9-Aug	27-May	23-Jun	23-Aug
2021	19-May	5-Jun	9-Aug	23-May	14-Jun	30-Aug
2022	23-May	20-Jun	8-Jul	16-May	26-Jun	29-Jul

^{1.} In 2000 all returning CESRF fish were age-3 (jacks).

^{2.} Mean daily water temperatures at Kiona (rkm 40 from the mouth of the Yakima R.) exceeded 70° F every day from May 21 to August 29, 2015 (source U.S. BOR hydromet database) causing delayed passage for late migrating fish.

Spawning Timing

Median spawn timing for CESRF spring Chinook is earlier than that observed for wild/natural fish in the Upper Yakima River. These differences are due in part to environmental conditions and spawning procedures at the hatchery. It must also be noted that spawning dates in the wild are only a coarse approximation, derived from weekly redd counts not actual dates of redd deposition. A clear delineation of wild/natural spawn timing between subbasins is apparent, with American River fish spawning about 1 month earlier than Naches Basin fish which spawn about 2 weeks earlier than Upper Yakima fish.

Table 30. Median spawn¹ dates for spring Chinook in the Yakima Basin.

			Upper	
Year	American	Naches	Yakima	CESRF
1988	14-Aug	7-Sep	3-Oct	
1989	14-Aug	7-Sep	19-Sep	
1990	14-Aug	12-Sep	25-Sep	
1991	12-Aug	12-Sep	24-Sep	
1992	11-Aug	10-Sep	22-Sep	
1993	9-Aug	8-Sep	27-Sep	
1994	16-Aug	14-Sep	26-Sep	
1995	14-Aug	7-Sep	1-Oct	
1996	20-Aug	18-Sep	23-Sep	
1997	12-Aug	11-Sep	23-Sep	23-Sep
1998	11-Aug	15-Sep	30-Sep	22-Sep
1999	24-Aug	8-Sep	27-Sep	21-Sep
2000	7-Aug	20-Sep	19-Sep	19-Sep
2001	14-Aug	13-Sep	25-Sep	18-Sep
2002	12-Aug	11-Sep	23-Sep	24-Sep
2003	11-Aug	14-Sep	28-Sep	23-Sep
2004	17-Aug	12-Sep	27-Sep	21-Sep
2005	15-Aug	15-Sep	27-Sep	20-Sep
2006	15-Aug	14-Sep	26-Sep	19-Sep
2007	14-Aug	12-Sep	25-Sep	25-Sep
2008	11-Aug	12-Sep	23-Sep	23-Sep
2009	17-Aug	10-Sep	23-Sep	28-Sep
2010	17-Aug	12-Sep	21-Sep	21-Sep
2011	23-Aug	8-Sep	21-Sep	20-Sep
2012	21-Aug	11-Sep	24-Sep	25-Sep
2013	19-Aug	11-Sep	25-Sep	23-Sep
2014	19-Aug	18-Sep	29-Sep	24-Sep
2015	20-Aug	17-Sep	28-Sep	23-Sep
2016	16-Aug	16-Sep	27-Sep	20-Sep
2017^{2}	16-Aug		26-Sep	19-Sep
2018	15-Aug	20-Sep	1-Oct	25-Sep
2019	15-Aug	9-Sep	1-Oct	24-Sep
2020	31-Aug	23-Sep	29-Sep	22-Sep
2021	23-Aug	22-Sep	27-Sep	21-Sep
2022	16-Aug	21-Sep	26-Sep	20-Sep
Mean	15-Aug	13-Sep	25-Sep	22-Sep

^{1.} Approximately one-half of the redds in the system were counted by this date and one-half were counted after this date. For the CESRF, approximately one-half of the total broodstock were spawned by this date and one-half were spawned after this date.

^{2.} Spawner surveys impacted by fires; especially in the Naches system.

Redd Counts and Distribution

Table 31. Yakima Basin spring Chinook redd count summary, 1981 – present.

-	Uppe		River System		Naches River System					
Year	Mainstem ¹	Cle Elum	Teanaway	Total	American	Naches ¹	Bumping	Little Naches	Total	
1981	237	57	0	294	72	64	20	16	172	
1981	610	30	0	640	11	25	6	12	54	
1983	387	15	0	402	36	27	11	9	83	
1984	677	31	0	708	72	81	26	41	220	
1985	795	153	3	951	141	168	74	44	427	
1986	1,716	77	0	1,793	464	543	196	110	1,313	
1987	968	75	0	1,043	222	281	133	41	677	
1988	369	74	0	443	187	145	111	47	490	
1989	770	192	6	968	187	200	101	53	541	
1990	727	46	0	773	143	159	111	51	464	
1991	568	62	0	630	170	161	84	45	460	
1992	1,082	164	0	1,246	120	155	99	51	425	
1993	550	105	1	656	214	189	88	63	554	
1994	226	64	0	290	89	93	70	20	272	
1995	105	12	0	117	46	25	27	6	104	
1996	711	100	3	814	28	102	29	25	184	
1997	364	56	0	420	111	108	72	48	339	
1998	123	24	1	148	149	104	54	23	330	
1999	199	24	1	224	27	95	39	25	186	
2000	3,349	466	21	3,836	54	483	278	73	888	
2001	2,910	374	21	3,305	392	436	257	107	1,192	
2002	2,441	275	110	2,826	366	226	262	89	943	
2003	772	87	31	890	430	228	216	61	935	
2004	2,985	330	129	3,444	91	348	205	75	719	
2005	1,717	287	15	2,019	140	203	163	68	574	
2006	1,092	100	58	1,250	136	163	115	33	447	
2007	665	51	10	726	166	60	60	27	313	
2008	1,191	137	47	1,375	158	165	102	70	495	
2009	1,349	197	33	1,579	92	159	163	68	482	
2010	2,199	219	253	2,671	173	171	168	40	552	
2011	1,663	171	64	1,898	212	145	175	48	580	
2012	1,276	125	69	1,470	337	196	189	89	811	
2013	552	85	34	671	170	66	85	55	376	
2014	962	138	53	1,153	129	65	158	27	379	
2015	1,258	39	24	1,321	239	177	152	46	614	
2016	512	83	22	617	149	106	74	37	366	
2017	402	118	23	543	123	84	56 44	30	293	
2018	339	13	0	352	27	56	44	1	128	
2019	185	44	9	238	21	1	2	7	31	
2020	189	44	8	241	44	25 50 ²	$71 49^2$	6	146	
2021	237	18	5	260	79 108	59 ²		0	187	
2022	426	40	32	498	198	85	45	2	330	
Mean	949	. 114	26	1,089	153	153	106	43	454	

¹ Including minor tributaries.
² Surveys in the Bumping R., Rattlesnake Cr., and upper Nile watershed precluded due to fire; used recent 5-yr average.

Homing

A team from NOAA fisheries conducted studies to determine the spatial and temporal patterns of homing and spawning by wild and hatchery-reared salmon released from CESRF facilities from 2001 to 2010. These studies collected GPS information on each redd and carcass recovered within a survey reach. Carcass surveys were conducted annually in late-September to early October by NOAA personnel in cooperation with Yakama Nation survey crews over five different reaches of the upper Yakima River and recorded the location of each redd flagged and carcass recovered. For each carcass sex, hatchery/wild, male status (full adult, jack, mini-jack), and CWT location was recorded. Data collected on the body location of CWTs allowed the identification of the release site of some fish. While these studies were not designed to comprehensively map carcasses and redds in all spawning reaches in the upper watershed, preliminary data indicate that fish from the Easton, Jack Creek, and Clark Flat acclimation facilities had distinct spawner distributions. A more complete description of this project is available from NOAA fisheries and in this publication:

Dittman, A. H., D. May, D. A. Larsen, M. L. Moser, M. Johnston, and D. Fast. 2010. Homing and spawning site selection by supplemented hatchery- and natural-origin Yakima River spring Chinook salmon. Transactions of the American Fisheries Society 139:1014-1028.

Straying

The regional PTAGIS (PIT tag) and RMIS (CWT) databases were queried in December 2022 to determine the number of CESRF releases not returning to the Yakima River Basin (RMIS CWT data are incomplete for the most recent years). For adult (age-3, -4, or -5) PIT tagged fish, a stray is defined as detection at an out-of-basin facility in the Snake (Ice Harbor or Lower Granite) or Upper Columbia (Priest Rapids, Rock Island, or Wells) without a subsequent detection at Prosser or Roza Dam. For coded-wire tagged fish, a stray is defined as a tag recovery in tributaries of the Columbia River upstream (and including the Snake River Basin) of its' confluence with the Yakima River. Marked (adipose fin clipped) fish are occasionally found during carcass surveys in the Naches River system and are assumed to be CESRF strays. Available data indicate that fewer than 0.5% of all returning CESRF fish are observed annually in the Naches spawner surveys.

Table 32. Estimated number of PIT- and CWT-tagged CESRF fish not returning to the Yakima River Basin (strays), brood years 1997-present.

	CESRE	PIT-Tagg	All CESRF Fish			
	Roza	111 1466		Yakima	2014 11	,11
Brood	Adult	Adult	Stray	River Mth	CWT	Stray
Year	Returns	Strays	Rate	Return	Strays	Rate
1997	598	2	0.33%	8,670	1	0.01%
1998	398	0	0.00%	9,782		
1999	23	0	0.00%	864		
2000	150	4	2.60%	4,819	2	0.04%
2001	80	3	3.61%	1,251		
2002	97	5	4.90%	2,557		
2003	31	0	0.00%	1,020		
2004	125	1	0.79%	4,482	5	0.11%
2005	142	0	0.00%	5,004		
2006	462	3	0.65%	10,577	1	0.01%
2007	240	1	0.41%	7,604	5	0.07%
2008	215	0	0.00%	8,036		
2009	110	0	0.00%	3,606		
2010	207	5	2.36%	5,592	2	0.04%
2011^{1}	181	28	13.40%	4,160	16	0.38%
2012	69	13	15.85%	1,932	20	1.04%
2013	152	4	2.56%	3,139	6	0.19%
2014	131	13	9.03%	2,865	4	0.14%
2015	57	2	3.39%	1,321	1	0.08%
2016	62	10	13.89%	1,263	7	0.55%
2017	93	6	6.06%	1,700	19	1.12%
2018	137	8	5.52%	2,248		600 E (

¹ Water temperatures in the lower Yakima River were greater than 68° F for much of the late spring/summer migration since 2015 which may have caused many fish returning in recent years to seek cooler water in other parts of the Columbia Basin.

CESRF Spawning and Survival

As described earlier, a portion of natural- and hatchery-origin (NoR and HoR, respectively) returning adults are captured at Roza Dam during the adult migration and taken to the CESRF for broodstock and/or research purposes. Fish are held in adult holding ponds at the CESRF from capture in the spring and summer until spawning in September through early October. All mortalities during the holding period are documented by sex and origin. During the spawning period data are kept on the number of males and females of each origin used for spawning or other purposes. All females have samples taken that are later evaluated for presence of BKD-causative agents. Eggs from females with high BKD-presence indicators are generally excluded (see Female BKD Profiles). Once fertilized, eggs are placed in holding troughs until shock time. Dead eggs are then sorted and hand-counted. All live eggs are machine counted, sorted into two lots per female (treatment and control) and placed into incubation (heath) trays. Using hand counts of egg samples from a subsample of female egg lots, WDFW staff determined that machine counts are biased and that the best approximation of live egg counts is given by the following equation:

$$\left(\left(\frac{\text{no. eggs in subsample}}{\text{wt. of subsample}} * \text{total egg mass wt}\right) * 0.945\right) - \text{dead eggs}$$

where

the first 3 parameters are from egg samples taken from females at spawn time, dead eggs are the number of dead or unfertilized eggs counted at shock time, and the 0.945 value is a correction factor from 1997 and 2000 WDFW studies.

Total egg take is calculated as the total number of live eggs, dead eggs, and all documented egg loss (e.g. spilled at spawn time, etc.). Heath trays are periodically sampled during incubation and dead fry are culled and counted. The number of live eggs less documented fry loss is the estimate of the number of fry ponded. Once fry are ponded, mortalities are counted and recorded daily during the rearing period. Fish are hand counted in the fall prior to their release as they are 100-percent marked. This hand-count less documented mortalities from marking through release is the estimate of smolts released. Survival statistics by origin and life-stage are given in Tables 33 and 34.

Table 33. Cle Elum Supplementation and Research Facility spawning and survival statistics (NoR brood only), 1998 - present.

				No. Fish	Spawned ¹									Live-
						%			%		Live-		Fry-	Egg-
Brood	Total	Total	PreSpawn			BKD	Total Egg	Live	Egg	Fry	Egg-Fry	Smolts	Smolt	Smolt
Year	Collected	Morts.	Survival	Males ²	Females	Loss	Take	Eggs	Loss ³	Ponded ⁴	Survival	Released	Survival	Survival
1998	408	70	82.8%	140	198	1.4%	739,802	664,125	10.2%	627,481	98.7%	589,648	94.0%	92.7%
1999	738^{5}	24	96.7%	213	222	2.7%	818,816	777,984	5.0%	781,872	97.3%	758,789	97.0%	94.5%
2000	567	61	89.2%	170	278	9.2%	916,292	851,128	7.1%	870,328	97.3%	834,285	95.9%	93.4%
2001	595	171	71.3%	145	223	53.2%	341,648	316,254	7.4%	380,880	98.6%	370,236	97.2%	96.1%
2002	629	89	85.9%	125	261	10.0%	919,776	817,841	11.1%	783,343	98.0%	749,067	95.6%	93.6%
2003	441	54	87.8%	115	200	0.0%	856,574	787,933	8.0%	761,990	98.4%	735,959	96.6%	95.0%
2004	597	70	88.3%	125	245	0.4%	873,815	806,375	7.7%	776,941	97.8%	$691,109^6$	89.0%	87.0%
2005	526	57	89.2%	136	241	0.0%	907,199	835,890	7.9%	796,559	98.1%	769,484	96.6%	94.7%
2006	519	45	91.3%	122	239	1.7%	772,357	703,657	8.9%	631,691	97.3%	574,361 ⁷	90.9%	88.3%
2007	473	49	89.6%	149	216	0.9%	798,729	760,189	4.8%	713,814	98.9%	676,602	94.8%	93.7%
2008	480	38	92.1%	151	253	2.0%	915,563	832,938	9.0%	809,862	99.0%	$752,109^8$	97.3%	96.3%
2009	486	57	88.3%	142	219	1.4%	850,404	848,339	0.2%	770,706	98.2%	744,170	96.6%	94.6%
2010	483	20	95.9%	102	193	0.5%	787,953	753,464	4.4%	726,325	98.9%	702,751	96.8%	95.6%
2011	455	28	93.8%	103	197	0.0%	798,229	765,221	4.1%	721,197	98.1%	684,481	94.9%	93.0%
2012	363	14	96.1%	111	209	0.0%	819,775	788,605	3.8%	737,705	98.2%	712,036	96.5%	94.7%
2013	385	15	96.1%	153	179	0.6%	683,484	658,796	3.6%	613,493	98.9%	575,156	93.8%	92.6%
2014	384	39	89.8%	133	188	0.0%	679,374	639,989	5.8%	636,092	96.5%	599,908	94.3%	91.1%
2015	436	116	73.4%	128	182	0.5%	654,361	615,189	6.0%	613,796	97.0%	594,736	96.9%	94.1%
2016	394	57	85.5%	142	173	0.0%	687,218	652,110	5.1%	593,514	96.2%	588,139	99.1%	95.2%
2017	396	27	93.2%	152	193	2.1%	707,232	671,605	5.0%	642,836	95.7%	634,390	98.7%	94.5%
2018	305	6	98.0%	122	166	0.0%	565,221	534,753	5.4%	515,596	98.2%	498,011	96.6%	94.8%
2019	313	25	92.0%	103	174	2.3%	541,760	504,630	6.9%	482,177	94.7%	450,377	93.4%	88.5%
2020	423	29	93.1%	144	230	1.7%	708,208	676,954	4.4%	674,954	97.5%	666,173	98.7%	96.3%
2021	412	19	95.4%	146	244	0.8%	759,164	740,294	2.5%	727,234	98.2%	725,578	99.8%	98.0%
2022	377	23	93.9%	144	205	15.6%	549,885	533,284	3.0%	548,553	97.6%			
Mean	456	47	90.0%	135	210	4.2%	736,676	692,365	6.0%	667,390	97.8%	642,544	95.8%	93.6%

^{1.} Total collected minus total mortalities does not equal total spawned. This is because some fish are used in the spawning channel, some have been released back to the river, and some have not been used.

^{2.} Includes jacks.

^{3.} All documented egg loss at spawn time plus dead eggs counted at shock divided by the estimated total egg take.

^{4.} Based on physical counts at mark time and all documented rearing mortality from ponding to release, except for BY2013 it is live eggs (est.) minus fry loss.

^{5.} Approximately one-half of these were jacks, many of which were not used in spawning.

^{6.} Approximately 45,000 smolts lost at Jack Creek due to frozen equipment in February, 2006.

^{7.} EWOS feed treatment had high mortality and was discontinued in May 2007; resulted in lower survival to release.

^{8.} Approximately 36,000 NoR (Table 33) and 12,000 HoR (Table 34) fish were culled in July 2009 to reduce pond densities; these fish were added back in to fry-smolt and live-egg-smolt survival calculations.

Table 34. Cle Elum Supplementation and Research Facility spawning and survival statistics (HoR brood only), 2002 - present.

_				No. Fish	Spawned ¹									Live-
					•	%	Total		%		Live-		Fry-	Egg-
Brood	Total	Total	PreSpawn			BKD	Egg	Live	Egg	Fry	Egg-Fry	Smolts	Smolt	Smolt
Year	Collected	Morts.	Survival	Males ²	Females	Loss	Take ⁹	Eggs ¹⁰	Loss ³	Ponded ⁴	Survival	Released	Survival	Survival
2002	201	22	89.1%	26	72	4.2%	258,226	238,152	7.8%	91,300	98.2%	87,837	96.2%	94.4%
2003	143	12	91.6%	30	51	0.0%	219,901	203,784	7.3%	91,204	98.8%	88,733	97.3%	96.1%
2004	126	19	84.9%	22	49	0.0%	187,406	176,292	5.9%	100,567	98.3%	94,339	93.8%	92.2%
2005	109	6	94.5%	26	45	0.0%	168,160	147,628	12.2%	92,903	98.1%	90,518	97.4%	95.6%
2006	136	21	84.6%	28	41	2.4%	112,576	102,889	8.6%	74,735	97.6%	68,434	91.6%	89.4%
2007	110	15	86.4%	26	35	0.0%	125,755	121,755	3.2%	96,912	99.2%	94,663	97.7%	96.9%
2008	194	10	94.8%	51	67	1.5%	247,503	234,780	5.1%	111,797	98.9%	97,196	97.4%	96.4%
2009	164	24	85.4%	30	38	0.0%	148,593	147,458	0.8%	91,221	98.3%	88,771	97.3%	95.6%
2010	162	9	94.4%	29	55	1.8%	215,814	197,587	8.4%	96,144	97.9%	92,030	95.7%	93.7%
2011	166	7	95.8%	28	49	0.0%	188,075	179,650	4.5%	88,852	98.4%	84,701	95.3%	93.8%
2012	140	8	94.3%	29	42	0.0%	148,932	145,985	2.0%	94,031	98.8%	90,680	96.4%	95.3%
2013	186	5	97.3%	38	43	0.0%	155,383	150,853	2.9%	75,842	98.2%	71,599	94.4%	92.7%
2014	86	11	87.2%	21	29	0.0%	104,121	102,431	1.6%	91,702	97.2%	85,322	93.0%	90.4%
2015	61	23	62.3%	15	22	13.6%	66,238	64,646	2.4%	62,625	96.9%	60,211	96.1%	93.1%
2016	114	25	78.1%	33	35	0.0%	129,355	121,466	6.1%	85,910	95.8%	81,069	94.4%	90.4%
2017	127	8	93.7%	46	55	0.0%	195,070	187,173	4.0%	88,905	97.9%	76,279	85.8%	84.0%
2018	101	6	94.1%	33	54	0.0%	179,083	172,211	3.8%	$150,126^{11}$	96.1%	144,409	96.2%	92.4%
2019	126	12	90.5%	43	46	0.0%	128,677	115,667	10.1%	$120,071^{11}$	92.6%	100,021	83.3%	77.1%
2020	131	18	86.3%	43	50	4.0%	133,970	124,494	7.1%	97,324	97.3%	95,015	97.6%	95.0%
2021	118	13	89.0%	37	49	0.0%	124,346	120,825	2.8%	93,976	98.8%	83,432	88.8%	87.7%
2022	233	37	84.1%	67	111	6.3%	271,279	263,871	2.7%	103,510	97.0%			
Mean	140	15	88.5%	33	49	1.6%	167,070	158,076	5.2%	95,222	97.6%	88,763	94.3%	92.1%

Continued from footnotes for Table 33 above.

^{9.} Table 34 -- From 2002 to present this is the estimated total egg take from all HxH crosses.

^{10.} Table 34 – Estimated live eggs of total egg take. Due to the large surplus of eggs over the approximately 100K needed for the HxH line in many years, surplus fry were either planted in nearby land-locked lakes or were destroyed.

^{11.} The number of segregated, hatchery-control line brood raceways was increased from 2 to 4 for this brood due to overall brood shortages.

Female BKD Profiles

Adults used for spawning and their progeny are tested for a variety of pathogens accepted as important in salmonid culture (USFWS Inspection Manual, 2003), on a population or "lot" basis. At the CESRF, and in the Columbia Basin it has been accepted that the most significant fish pathogen for spring Chinook is *Renibacterium salmoninarum*, the causative agent of Bacterial Kidney Disease (BKD). All adult females and 30-60 juveniles from each acclimation pond are individually tested for levels of *Renibacterium salmoninarum* using ELISA (Enzyme linked Immuno-sorbant Assay). ELISA data are reported annually to CESRF and YKFP staff for management purposes, eventual data entry and comparisons of ponds and rearing parameters. To date, no significant occurrences of other pathogens have been observed. Periodic field exams for external parasites and any signs of disease are performed on an "as needed" basis. Facility staff have been trained to recognize early signs of behavior changes or diseases and would report any abnormalities to the USFWS, Olympia Fish Health Center for further diagnostic work.

Adult females are ranked from 0 to 13 based on the relative amounts of BKD in the tissue samples of the tested fish. All BKD ranks below 5 are considered low risk for transferring significant BKD organisms through the egg to cause significant disease in progeny receiving proper care. The progeny of adults with BKD rank 6 are considered to be moderate risk and those with BKD rank 7 or greater are considered to be high risk. Given these data, the CESRF chose to rear only the progeny of females with a BKD rank of 6 or less through brood year 2001. Beginning with brood year 2002, the progeny of fish with BKD rank 6 (moderate risk) or greater (high risk) have not been used for production purposes at the CESRF.

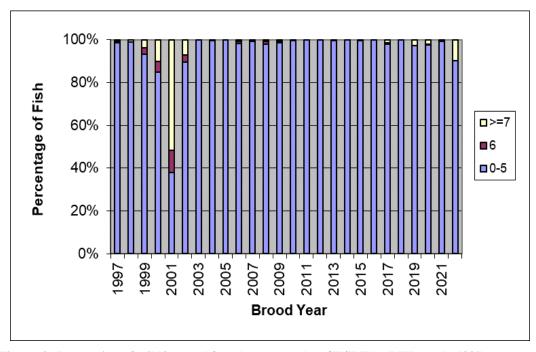


Figure 4. Proportion of wild/natural females spawned at CESRF by BKD rank, 1997 - present.

Fecundity

Fish collected at Roza Dam are taken to the CESRF for spawning and/or research purposes. Egg loss due to spill or other reasons at spawn time is documented. When eggs are shocked, unfertilized (dead) eggs are hand-counted and remaining eggs are machine counted. Due to error associated with machine counts, average fecundity is calculated using spawn-time egg sample data (see discussion above under CESRF Spawning and Survival) and adding in documented egg loss for all females divided by the number of females (N) in the sample.

Table 35. Mean fecundity by age of adult females (BKD rank < 6) spawned at CESRF, 1997-present.

	Wild/Natural (SN)							CESRF (HC)				
Brood		Age-3	1	Age-4		Age-5		Age-3		Age-4		Age-5
Year	N	Fecundity	N	Fecundity	N	Fecundity	N	Fecundity	N	Fecundity	N	Fecundity
1997			105	3,842.0	4	4,069.9						
1998	2^{1}	3,908.9	161	3,730.3	15	4,322.5						
1999	3^{1}	4,470.4	183	3,968.1	14	4,448.6						
2000			224	3,876.5	2	5,737.9						
2001			72	3,966.9	9	4,991.2			18	4,178.9		
2002	1	1,038.0	205	3,934.7	7	4,329.4			60	3,820.0	1	4,449.0
2003			163	4,160.2	31	5,092.8			30	3,584.1	19	5,459.9
2004			224	3,555.4	2	4,508.3			42	3,827.2		
2005	1	1,769.0	218	3,815.5	5	4,675.1			38	3,723.9	5	4,014.7
2006			196	3,396.4	24	4,338.9			36	3,087.3		
2007			178	3,658.3	24	4,403.3			33	3,545.2	2	4,381.9
2008			207	3,814.0	10	4,139.9			58	3,898.0		
2009	1	2,498.2	195	4,018.9	6	4,897.1			34	3,920.3		
2010			185	4,103.0					54	3,996.6		
2011	1^{1}	3,853.1	179	4,000.1	4	5,692.1			41	3,843.3	2	4,098.2
2012			186	3,901.0	5	4,982.8			41	3,537.4	1	3,900.5
2013			159	3,760.3	6	5,068.0			36	3,498.7	2	4,955.3
2014			171	3,889.4	4	4,599.5			25	3,627.1	1	5,335.8
2015			166	3,963.0	2	5,249.3			14	3,975.1	1	3,793.3
2016			159	3,969.1	7	4,959.4			34	3,675.9	1	4,375.5
2017	2	2,150.6	161	4,013.8	1	3,805.5	1	1,645.0	53	3,609.1		
2018			130	3,452.4	6	3,643.9			49	3,348.3		
2019	1	1,500.8	129	3,573.2	2	3,519.3	2	1,520.5	40	3,466.3	1	3,204.0
2020			165	3,413.9	4	3,772.2			39	3,393.3	1	5,008.6
2021	1	3,351.8	197	3,674.5	14	3,989.3			38	3,217.4	2	2,770.2
2022			127	3,793.6	1	2,469.6			71	3,426.2		
Mean				3,817.1		4,468.2				3,644.9		4,288.2

^{1.} Given their length and fecundity, these fish may have been incorrectly aged.

Juvenile Salmon Evaluation

Food Conversion Efficiency

At the end of each month that fish are in the rearing ponds at the CESRF or the acclimation sites, a sample of fish are weighed and measured to estimate growth. These data, in addition to monthly mortality and pond feed data are entered into the juvenile growth and survival tracking database. Hatchery managers monitor food conversion (total pounds fed during a month divided by the total pounds gained by the fish) to track how well fish are converting feed into body mass and to evaluate the amount of feed that needs to be provided on a monthly basis. Average monthly food conversion and growth statistics for the CESRF facilities by brood year are provided in the following tables and figures.

Table 36. Mean food conversion (lbs fed/lbs gained) of CESRF juveniles by brood year and growth month, 1997 – present.

Brood			т.	т 1		C	0.4	N.T.	Ъ	T	Г.1	
Year	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1997	2.2		1.1	0.8	1.2	0.8	1.5	1.5		1.9		5.3
1998		1.0	0.9	1.0	0.9	0.8	2.4	1.4	2.1	-0.3	1.0	1.2
1999		1.0	1.1	1.1	1.2	1.5	1.8	1.0		-0.5	0.3	1.7
2000	0.8	0.8	1.0	1.5	1.2	1.4	2.2	2.0	1.6	2.1	2.5	2.4
2001	1.1	1.1	2.6	1.1	1.3	1.2	1.6	2.0	2.3	2.5	2.8	0.9
2002	0.9	1.0	1.4	1.2	1.4	1.1	1.5	2.2	4.0	-1.4	2.9	1.0
2003	0.6	1.0	0.9	1.4	1.2	1.2	4.6	0.7	0.9	-0.2	1.8	1.0
2004	0.9	1.0	1.2	1.6	2.4	1.2	1.7	2.0	2.8	0.9	-2.6	1.1
2005	0.8	0.7	1.3	1.0	1.3	1.2	1.5	-0.8	0.4	-0.4	2.2	
2006	0.8	0.7	0.6	0.9	0.8	1.0	1.6	-1.0		-2.6	0.6	0.6
2007	0.7	0.7	0.9	0.9	1.0	0.8	2.2	-1.6	1.9	2.0	0.7	0.9
2008	0.5	0.6	0.9	0.9	1.0		0.8	1.7	-1.1	0.9	0.9	0.6
2009	0.5	1.2	1.0	0.7	1.1	1.0	1.5	4.1	0.6	-2.8	0.8	0.9
2010	0.6	0.8	1.3	0.8	0.8	1.8	2.8	1.3		0.8	0.8	0.7
2011	0.9	0.6	0.8	0.7	1.1	0.9		0.7		0.6	0.9	1.0
2012	0.8	1.4	1.1	0.8	1.3	1.4	1.0	1.1		1.0	3.1	1.2
2013	0.6	0.9	0.7	0.9	1.0	1.1	2.7	1.4		0.4	0.8	2.5
2014	0.5	2.2	0.7	1.0	2.4	0.7	4.3	0.5		1.7	0.9	0.8
2015	0.8	0.9	0.8	1.0	1.3	0.9	-1.8	0.7	-0.8	1.0	0.5	0.9
2016	0.6	0.9	0.8	1.0	1.1	1.1	2.1	1.8	1.0	0.6	0.4	0.8
2017	0.8	0.8	0.9	0.9	1.7	0.8	2.1	2.9	3.8	0.4	0.1	0.6
2018	0.7	0.8	0.9	0.9	1.3	1.1	2	0.9	2.0	0.6	1.3	1.6
2019	0.8	1.7	1.1	0.8	1.3	1.5	1.1	1.6	3.3	0.6	1.5	0.9
2020	0.6	1.2	0.7	0.8	3.0	0.9	2.4	1.2	-1.6	0.4	1.6	1.0
2020	0.5	1.1	0.7	0.7	1.2	0.9	∠.¬	0.6	-1.0	0.7	1.6	1.0
Mean	0.3	1.0	1.0	1.0	1.3	1.1	1.9	1.2	1.4	0.4	1.1	1.1
ivicali	0.0	1.0	1.0	1.0	1.5	1.1	1.7	1.4	1.4	0.4	1.1	1.1

Length and Weight Growth Profiles



Figure 5. Mean fork length (cm) of CESRF juveniles by brood year and growth month, 1997 - present.

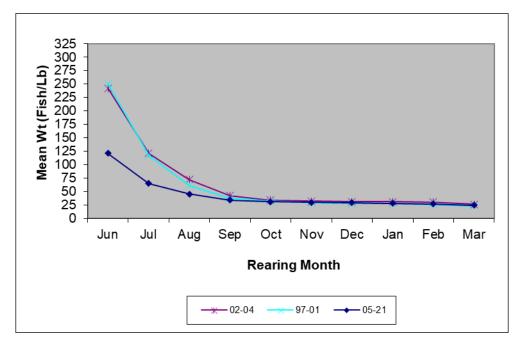


Figure 6. Mean Weight (fish/lb) of CESRF juveniles by brood year and growth month, 1997 - present.

Juvenile Fish Health Profile

Approximately 50-100 juveniles were sacrificed for juvenile fish health samples in the spring (usually in March) of their release year. Tissue samples from these fish were processed at USFWS laboratories in Olympia, Washington for presence of bacterial kidney disease (BKD) using enzyme-linked immunosorbent assay (ELISA) tests (see Female BKD Profiles and Appendix B for additional discussion). Fish were ranked high, moderate, or low (risk) based on the relative amounts of BKD in the tissue samples of the tested fish. These relative risk levels assume a good fish culture and rearing environment (i.e., water temperature and flows, nutrition, densities, etc. all must be conducive to good fish health). As indicated in Figure 7, juvenile fish released from the CESRF are largely in the low risk category for all brood years sampled to date. Due to budget issues and the low incidence observed over twenty years of testing, the USFWS discontinued testing of juveniles beginning with brood year 2017.

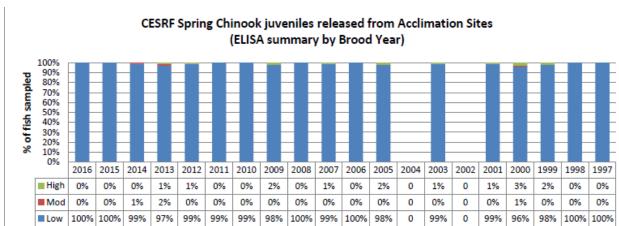


Figure 7. ELISA-risk profile of CESRF juveniles by brood year, 1997 – present (data source: USFWS).

Incidence of Precocialism

For brood years 2002-2004, the YKFP tested two different feeding regimes to determine whether a slowed-growth regime reduces the incidence of precocialism without a reduction in post-release survival. The two growth regimes tested were a normal (High) growth regime resulting in fish which were about 30/pound at release and a slowed growth regime (Low) resulting in fish which were about 45/pound at release. As a critical part of this study, a team from NOAA Fisheries conducted research to characterize the physiology and development of wild and hatchery-reared spring Chinook salmon in the Yakima River Basin. While precocious male maturation is a normal life-history strategy, the hatchery environment may be potentiating this developmental pathway beyond natural levels resulting in potential loss of anadromous adults, skewing of sex ratios, and negative genetic and ecological impacts on wild populations. Previous studies have indicated that age of maturation is significantly influenced by endogenous energy stores and growth rate at specific times of the year. These studies will help direct rearing strategies at the CESRF to allow production of hatchery fish with physiological and life-history attributes that are more similar to their wild cohorts.

Relevant Publications:

- Larsen, D. A., B. R. Beckman, K. A. Cooper, D. Barrett, M. Johnston, P. Swanson, and W. W. Dickhoff. 2004. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program. Transactions of the American Fisheries Society 133:98-120.
- Beckman, B.R. and Larsen D.A. 2005. Upstream Migration of Minijack (Age-2) Chinook Salmon in the Columbia River: Behavior, Abundance, Distribution, and Origin. Transactions of the American Fisheries Society 134:1520–1541.
- Larsen, D.A., B.R. Beckman, C.R. Strom, P.J. Parkins, K.A. Cooper, D.E. Fast, W.W. Dickhoff. 2006. Growth Modulation Alters the Incidence of Early Male Maturation and Physiological Development of Hatchery-reared Spring Chinook Salmon: a Comparison with Wild Fish. Transactions of the American Fisheries Society 135:1017-1032.
- Pearsons, T.N., C.L. Johnson, B.B. James, and G.M. Temple. 2009. Abundance and Distribution of Precociously Mature Male Spring Chinook Salmon of Hatchery and Natural Origin in the Yakima River. North American Journal of Fisheries Management 29:778-790.
- Larsen, D.A., B.R. Beckman, and K.A. Cooper. 2010. Examining the Conflict between Smolting and Precocious Male Maturation in Spring (Stream-Type) Chinook Salmon. Transactions of the American Fisheries Society 139: 564-578.
- Larsen, D.A., D.L. Harstad, C.R. Strom, M.V. Johnston, C.M. Knudsen, D.E. Fast, T.N. Pearsons, and B.R. Beckman. 2013. Early Life History Variation in Hatchery- and Natural-Origin Spring Chinook Salmon in the Yakima River, Washington. Transactions of the American Fisheries Society 142:2, 540-555.

CESRF Smolt Releases

The number of release groups and total number of fish released diverged from facility goals in some years. In brood year 1997, the Jack Creek acclimation facility was not yet complete and project policy and technical teams purposely decided to under-collect brood stock to allow a methodical testing of the new facility's operations with less risk to live fish, which resulted in the stocking of only 10 of the 18 raceways. In brood year 1998, the project did not meet facility release goals due to a biological specification that no more than 50% of returning wild fish be taken for brood stock. As a result only 16 raceways were stocked with progeny of the 1998 brood. In the same year, raceway 4 at the Jack Creek acclimation site suffered mechanical failures causing loss of flow and reduced oxygen levels and resulted in the loss of approximately one-half the fish in this raceway prior to release. In the drought year of 2001, a large number of returning adults presented with high enzyme-linked immunosorbent assay (ELISA) levels of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). The progeny of these females were purposely destroyed. As a result, only nine raceways were stocked with fish. The project decided to use the fish from an odd raceway for a predator avoidance training sub-experiment (these fish were subsequently acclimated and released from the Easton acclimation site).

Table 37. CESRF total releases by brood year, treatment, and acclimation site.

Brood			Ac	climation S	ite	
Year	Control ¹	Treatment ²	CFJ	ESJ	JCJ	Total
1997	207,437	178,611	229,290	156,758		386,048
1998^{3}	284,673	305,010	221,460	230,860	137,363	589,683
1999	384,563	374,226	232,563	269,502	256,724	758,789
2000	424,554	409,731	285,954	263,061	285,270	834,285
2001^{4}	183,963	186,273	80,782	39,106	250,348	370,236
2002	420,764	416,140	266,563	290,552	279,789	836,904
2003	414,175	410,517	273,377	267,711	283,604	824,692
2004^{5}	378,740	406,708	280,598	273,440	231,410	785,448
2005	431,536	428,466	287,127	281,150	291,725	860,002
2006	351,063	291,732	209,575	217,932	215,288	642,795
2007	387,055	384,210	265,907	254,540	250,818	771,265
2008	421,290	428,015	280,253	287,857	281,195	849,305
2009	418,314	414,627	279,123	281,395	272,423	832,941
2010	395,455	399,326	264,420	264,362	265,999	794,781
2011	382,195	386,987	255,290	248,454	265,438	769,182
2012	401,059	401,657	256,732	276,210	269,774	802,716
2013	No Ex	periment	215,933	214,745	216,077	646,755
2014	337,548	347,682	232,440	226,257	226,533	685,230
2015	331,316	323,631	208,239	218,225	228,483	654,947
2016	339,816	329,392	230,490	218,676	220,042	669,208
2017	351,656	359,013	244,236	233,449	232,984	710,669
2018	322,219	320,201	213,833	206,619	221,968	642,420
2019	270,242	280,156	153,575	193,042	203,781	550,398
2020	376,302	384,886	261,643	244,378	255,167	761,188
2021		809,010	268,064	276,969	263,977	809,010
Mean	357,215	355,096	239,899	237,410	246,091	713,556

Table 38. CESRF average pond densities at release by brood year, treatment, and acclimation site.

Brood	Trea	ntment	Aco	climation Si	te
Year	$Control^1$	Treatment ²	CFJ	ESJ	JCJ
1997	41,487	35,722	38,215	39,190	
1998^{3}	35,584	38,126	36,910	38,477	34,341
1999	42,729	41,581	38,761	44,917	42,787
2000	47,173	45,526	47,659	43,844	47,545
2001^{4}	41,116	41,667	40,391	6,518	41,725
2002	46,752	46,238	44,427	48,425	46,632
2003	46,019	45,613	45,563	44,619	47,267
2004^{5}	42,082	45,190	46,766	45,573	38,568
2005	47,948	47,607	47,855	46,858	48,621
2006	39,007	32,415	34,929	36,322	35,881
2007	43,006	42,690	44,318	42,423	41,803
2008	46,810	47,557	46,709	47,976	46,866
2009	46,479	46,070	46,521	46,899	45,404
2010	43,939	44,370	44,070	44,060	44,333
2011	42,466	42,999	42,548	41,409	44,240
2012	44,562	44,629	42,789	46,035	44,962
2013	No Ex	periment	35,989	35,791	36,013
2014	37,505	38,631	38,740	37,710	37,756
2015	36,813	35,959	34,707	36,371	38,081
2016	37,757	36,599	38,415	36,446	36,674
2017	39,073	39,890	40,706	38,908	38,831
2018	35,802	35,578	35,639	34,437	36,995
2019	30,027	31,128	25,596	32,174	33,964
2020	41,811	42,765	43,607	40,730	42,528
2021		44,945	44,677	46,162	43,996
Mean	41,563	41,396	41,060	40,091	41,492

- 1. Brood years 1997-2001: Optimum Conventional Treatment (OCT). Brood Years 2002-2004: Normal (High) growth. Brood Years 2005-2012: Normal feed at Cle Elum or accl. sites.
- 2. Brood years 1997-2001: Semi-natural Treatment (SNT). Brood Years 2002-2004: Slowed (Low) growth. Brood Year 2005, 2007-2012: saltwater transition feed at accl. Sites; BY2014-2021: BioPRO vs BioVIT diet. Brood Year 2006: EWS diet at CESRF through May 3, 2007; BY2022: BioVIT.
- 3. At the Jack Creek acclimation site only 4 of 6 raceways were stocked, and raceway 4 suffered mechanical failures resulting in the loss of about 20,000 OCT (control) fish.
- 4. High BKD incidence in adult broodstock reduced production to just 9 ponds (Clark Flat 1-2, Jack Creek, and Easton). Easton ponds were used for predator avoidance trained (PAT) fish and a single Cle Elum pond was spread between 6 ponds at Easton with crowders used to simulate pond densities for fish at other acclimation sites. These releases were excluded from mean pond density calculations by treatment.
- 5. At the Jack Creek acclimation site raceway 3 suffered mechanical failures resulting in the loss of about 45,000 high-growth (control) fish.

Mean length and weight at release by brood year are shown in Figures 5 and 6 under Juvenile Salmon Evaluation, length and weight growth profiles. Mark information and volitional release dates are given in Appendix A.

Smolt Outmigration Timing

The Chandler Juvenile Monitoring Facility (CJMF) located on the fish bypass facility of Chandler Canal at Prosser Dam (Rkm 75.6; Figure 1) serves as the cornerstone facility for Appendix B. Yakima River / CESRF Spring Chinook Salmon – Yakama Nation Data Summary 2022 Annual Report, Sept. 12, 2023

estimating smolt production in the Yakima Basin for several species and stocks of salmonids. Daily species counts in the livebox at the CJMF are expanded by the canal entrainment, canal survival, and sub-sampling rates in order to estimate daily passage at Prosser Dam (Pandit 2020). Expansion techniques for deriving Chandler smolt passage estimates are continually being reviewed and revised to incorporate new information. A subset of fish passing through the CJMF is sampled for presence of internal (CWT or PIT) or external (fin-clip) marks. All fish with marks are assumed to be of hatchery origin; otherwise, fish are presumed to be of natural origin.

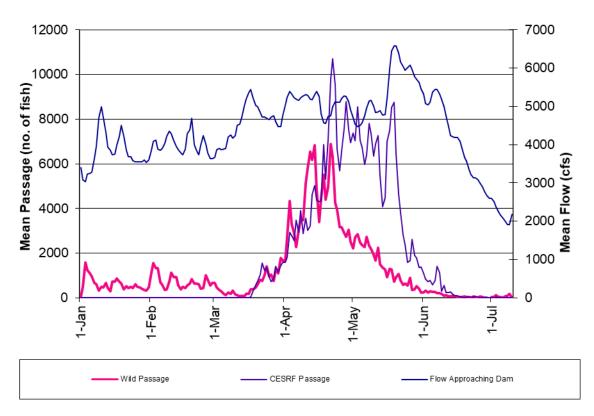


Figure 8. Mean flow approaching Prosser Dam versus mean estimated smolt passage at Prosser of aggregate wild/natural and CESRF spring Chinook for outmigration years 1999-2022.

Smolt-to-Smolt Survival

OCT-SNT Treatment (Brood Years 1997-2001, Migration Years 1999-2003)

Results of this experiment have been published:

Fast, D. E., D. Neeley, D.T. Lind, M. V. Johnston, C.R. Strom, W. J. Bosch, C. M. Knudsen, S. L. Schroder, and B.D. Watson. 2008. Survival Comparison of Spring Chinook Salmon Reared in a Production Hatchery under Optimum Conventional and Seminatural Conditions. Transactions of the American Fisheries Society 137:1507–1518.

Abstract — We found insufficient evidence to conclude that seminatural treatment (SNT; i.e., rearing in camouflage-painted raceways with surface and underwater structures and underwater

feeders) of juvenile Chinook salmon *Oncorhynchus tshawytscha* resulted in higher survival indices than did optimum conventional treatment (OCT; i.e., rearing in concrete raceways with surface feeding) for the specific treatments and environmental conditions tested. We reared spring Chinook salmon from fry to smolt in paired raceways under the SNT and OCT rearing treatments for five consecutive years. For four to nine SNT and OCT raceway pairs annually, we used passive integrated transponder, coded wire, and visual implant elastomer tags to compare survival indices for juvenile fish from release at three different acclimation sites 340–400 km downstream to passage at McNary Dam on the Columbia River, and for adults from release to adult return to Roza Dam in the upper Yakima basin. The observed differences in juvenile and adult survival between the SNT and OCT fish were either statistically insignificant, conflicting in their statistical significance, or explained by significant differences in the presence of the causative agents of bacterial kidney disease in juvenile fish at release.

High-Low Growth Treatment (Brood Years 2002-04, Migration Years 2004-2006)

Two early-rearing nutritional regimes were tested using hatchery-reared Yakima Upper spring Chinook for brood years 2002 through 2004. A low nutrition-feeding rate (low treatment or low) was administered at the Cle Elum Hatchery through early rearing to determine whether that treatment would reduce the proportion of precocials produced compared to a conventional feeding rate during early rearing. The conventional feeding rate, which served as a control treatment, is referred to here as a high nutrition-feeding rate (high treatment or high). Feed was administered at a rate of 10 grams/fish for the low treatment and 15 grams/fish for the high treatment through mid-October, after which sufficient feed was administered to both sets of treated fish to meet their feeding demands. The treatments were allocated within pairs of raceways (blocks), there being a total of nine pairs. The Low nutritional feed (Low) had a significantly lower release-to-McNary survival than did the High nutritional feed (High), respective survivals being 18.1% and 21.2% (P < 0.0001; D. Neeley, Appendix B of 2008 annual report). The Low survival to McNary was consistently lower than the High at all sites in all years. Low-treated fish were smaller fish at the time of release and had somewhat later McNary passage times than high-treated fish. See also:

- Larsen, D.A., B.R. Beckman, C.R. Strom, P.J. Parkins, K.A. Cooper, D.E. Fast, W.W. Dickhoff. 2006. Growth Modulation Alters the Incidence of Early Male Maturation and Physiological Development of Hatchery-reared Spring Chinook Salmon: a Comparison with Wild Fish. Transactions of the American Fisheries Society 135:1017-1032.
- Larsen, D. A., D. L. Harstad, C. R. Strom, M. V. Johnston, C. M. Knudsen, D. E. Fast, T. N. Pearsons, and B. R. Beckman. 2013. Early life history variation in hatchery- and natural-origin spring Chinook Salmon in the Yakima River, Washington. Transactions of the American Fisheries Society 142:540–555.

Feed Treatments (Brood Years 2005, 2007-2010; Migration Years 2007, 2009-2018)

Prior to releases in 2007, and 2009- 2018, two feed treatments were allocated to raceways within adjacent raceway pairs. The feeds tested included Bio-Oregon's BioPro, BioVita, and BioTransfer diets (see https://www.bio-oregon.com/). The intent of the experiments was to determine whether any of the various feeds conferred any life-stage survival advantages.

Preliminary analyses indicated no significant or substantial differences between the feeds when averaged over years. See Appendix H of our 2015 annual report and Appendix F of our 2019 annual report for additional detail.

Control (Bio-Oregon) versus EWOS Feed Comparison (Brood Year 2006, Migration Year 2008)

This experimental design was similar to that for other studies described above with standard Bio-Oregon pellets fed to half of the rearing ponds and an EWOS (https://www.cargill.com/animal-nutrition/brands/ewos) diet fed to the other ponds. The different feed treatments only lasted about 6 weeks from the time of initial ponding as we found substantially higher mortalities for fish receiving the EWOS feed. From May 7, 2007 until these fish were released in 2008 all fish in this study received the Bio-Oregon diet. For the parameters of interest, we found no significant or substantial differences between the two feeding treatments (Appendix B of 2008 annual report).

Smolt-to-Adult Survival

Calculation of smolt-to-adult survival rates for Yakima River spring Chinook is complicated by the following factors:

- 1) Downstream of the confluence of the Yakima and Naches rivers the three populations of spring Chinook (Upper Yakima, Naches, and American) are aggregated. A subsample of the aggregate wild/natural populations is PIT-tagged as part of the Chandler juvenile sampling operation but their origin is not known at the time of tagging. Through 2003, the primary purpose of this subsampling effort was to derive entrainment and canal survival estimates (see 2 below). Due to issues such as tag retention and population representation, adult detections of smolts PIT-tagged at Chandler cannot be used in any valid smolt-to-adult survival analyses.
- 2) Smolt accounting at Prosser is based on statistical expansion of Chandler smolt trap sampling data using available flow data and estimated Chandler entrainment rates. Chandler smolt passage estimates are prepared primarily for the purpose of comparing relative wild versus CESRF passage estimates and not for making survival comparisons. While these Chandler smolt passage estimates represent the best available data, there may be a relatively high degree of error associated with these estimates due to inherent complexities, assumptions, and uncertainties in the statistical expansion process. Therefore, these estimates are subject to revision. We are continuing to develop methods to subdivide the wild/natural outmigration into Upper Yakima, Naches, and American components based on DNA samples of juveniles taken at Chandler since 1998.
- 3) Installation of adult PIT detection equipment at all three ladders at Prosser Dam was not completed until the fall of 2005. Therefore, detection of upstream-migrating PIT-tagged adult spring Chinook at Prosser Dam was not possible for all returning fish until the spring of 2006. Periods of high flow may preclude use of automated detection gear so 100% detection of upstream migrants is not possible in all years.

- 4) Through 2006, detection of upstream-migrating PIT-tagged adult spring Chinook at Roza Dam occurred at an approximate 100% rate only for marked CESRF fish and wild/natural fish taken for broodstock. The majority of wild/natural fish were passed directly back to the river without PIT interrogation.
- 5) For the 1997 brood (1999 out-migration), 400 Khz PIT-tags were used. Mainstem detection facilities were not configured to detect these tags at nearly the efficiency that they can detect the newer 134.2 kHz ISO tags. Although all marked adult fish are trapped and hand-wanded for PIT detections of adults at Roza Dam, the reliability of the 400kHz detection gear and problems with hand-sampling in general likely precluded a complete accounting of all 1997 brood PIT returns.
- 6) All CESRF fish are adipose-fin clipped and subjected to higher harvest rates than unmarked wild/natural fish in marine and Columbia River mark-selective fisheries. No adjustments have yet been made in the following tables to account for differential harvest rates in these mark-selective fisheries.
- 7) PIT tag retention is a factor in estimating survival rates (Knudsen et al. 2009). No attempt has been made to correct the data in the following tables for estimates of tag retention.
- 8) The ISAB has indicated that "more attention should be given to the apparent documentation that PIT-tagged fish do not survive as well as untagged fish. This point has major implications for all uses of PIT-tagged fish as surrogates for untagged fish." Our data appear to corroborate this point (Tables 44-45). However, these data are not corrected for tag loss. If a fish loses its PIT tag after detection upon leaving the acclimation site, but before it returns as an adult to Roza Dam, it would be included only as a release in Table 45 and only as an adult return in Table 46. Knudsen et al. (2009) found that smolt-to-adult return rates (SARS) based on observed PIT tag recoveries were significantly underestimated by an average of 25% and that after correcting for tag loss, SARS of PIT-tagged fish were still 10% lower than SARS of non-PIT-tagged fish. Thus, the data in Table 45 under-represent "true" SARS for PIT-tagged fish and SARS for PIT-tagged fish are likely closer than those reported in Tables 44 and 45.
- 9) Due to issues relating to water permitting, size required for tagging, and allowing sufficient time for acclimation, CESRF juveniles are not allowed to migrate until at least March 15 of their smolt year. However, juvenile sampling observations at Roza Dam indicate that a substantial number of wild/natural juveniles migrate downstream during the summer, fall, and winter months prior to their smolt outmigration year (Figure 7). Comparison of SAR data for non-contemporaneously migrating juveniles may be invalid (see Copeland et al. 2015).

Given these complicating factors, Tables 39-45 present available smolt-to-adult survival data for Yakima River CESRF and wild/natural spring Chinook. Unfortunately, true "apples-to-apples" comparisons of CESRF and wild/natural smolt-to-adult survival rates are not possible from these tables due to complexities noted above. The reader is cautioned to correct these data for, or acknowledge the factors noted above prior to any use of these data.

Table 39. Estimated smolt passage at Chandler and smolt-to-adult return indices (Chandler smolt to Yakima R. mouth adult) for Yakima Basin wild/natural and CESRF-origin spring Chinook.

i <u>iioutii au</u>	Estimated Smolt Yakima R. Mouth Smolt-to-Adult											
		3.6										
		Mean	Passage at	Chandier	CECRE	Adult R	eturns	Return	Index			
	G 1	Flow ¹			CESRF							
ъ.	Smolt	at	******	GEGDE	smolt-	******	GEGDE	*******	GEGDE			
Brood	Migr.	Prosser	Wild/	CESRF	to-smolt	Wild/	CESRF	Wild/	CESRF			
Year	Year	Dam	Natural ²	Total	survival ³	Natural ²	Total	Natural ²	Total			
1984	1986	3887	227,932			3,932		1.7%				
1985	1987	3050	261,819			4,776		1.8%				
1986	1988	2454	271,316			4,518		1.7%				
1987	1989	4265	76,362			2,402		3.1%				
1988	1990	4141	140,218			5,746		4.1%				
1989	1991		109,002			2,597		2.4%				
1990	1992	1960	128,457			1,178		0.9%				
1991	1993	3397	92,912			544		0.6%				
1992	1994	1926	167,477			3,790		2.3%				
1993	1995	4882	172,375			3,202		1.9%				
1994	1996	6231	218,578			1,238		0.6%				
1995	1997	12608	52,028			1,995		3.8%				
1996	1998	5466	491,584			21,151		4.3%				
1997	1999	5925	584,016	187,669	48.6%	12,855	8,670	2.2%	4.6%			
1998	2000^{5}	4946	199,416	303,688	51.5%	8,240	9,782	4.1%	3.2%			
1999	2001	1321	148,460	281,256	37.1%	1,764	864	1.2%	0.3%			
2000	2002	5015	467,359	366,950	44.0%	11,434	4,819	2.4%	1.3%			
2001	2003	3504	308,959	154,329	41.7%	8,597	1,251	2.8%	0.8%			
2002	2004	2439	169,397	290,950	34.8%	3,743	2,557	2.2%	0.9%			
2003	2005	1285	134,859	236,443	28.7%	2,746	1,020	2.0%	0.4%			
2004	2006	5652	133,238	300,508	38.3%	2,802	4,482	2.1%	1.5%			
2005	2007	4551	99,341	351,359	40.9%	4,295	5,004	4.3%	1.4%			
2006	2008	4298	120,013	265,485	41.3%	6,004	10,577	5.0%	4.0%			
2007	2009	5784	237,228	415,923	53.9%	7,952	7,604	3.4%	1.8%			
2008	2010	3592	220,950	382,878	45.1%	7,385	8,036	3.3%	2.1%			
2009	2011	9414	304,322	442,564	53.1%	3,766	3,606	1.2%	0.8%			
2010	2012	8556	258,106	391,446	49.3%	6,602	5,592	2.6%	1.4%			
2011	2013	4875	365,386	372,079	48.4%	7,343	4,160	2.0%	1.1%			
2012	2014	4923	263,266	408,222	50.9%	3,969	1,932	1.5%	0.5%			
2013	2015	1555	125,150	332,715	51.4%	3,415	3,139	2.7%	0.9%			
2014	2016	5765	185,442	403,938	58.9%	1,800	2,865	1.0%	0.7%			
2015	2017	7804	208,929	273,248	41.7%	1,185	1,321	0.6%	0.5%			
2016	2018	5652	131,489	290,644	43.4%	1,931	1,263	1.5%	0.4%			
2017	2019	3595	175,427	319,579	45.0%	1,919	1,700	1.1%	0.5%			
2018	2020^{6}	2864	151,265	371,069	57.8%	$3,087^6$	$2,910^6$	$2.0\%^{6}$	$0.8\%^{6}$			
2019	2020^{6}	3815	106,092	212,000	38.5%	2,007	2,710	2.070	0.070			
2020	2022^{6}	6738	126,537	282,878	37.2%							

^{1.} Mean flow (cfs) approaching Prosser Dam March 29-July 4 of juvenile migration year. No data available for migration year 1991. In high flow years (flows at or > 5000 cfs) operation of the Chandler smolt sampling facility may be precluded during portions of the outmigration. Data courtesy of <u>U.S. BOR hydromet</u>.

^{2.} Aggregate of Upper Yakima, Naches, and American wild/natural populations.

^{3.} Estimated smolt-to-smolt (release from upper Yakima River acclimation sites to Chandler) survival for CESRF juveniles.

^{4.} Includes combined age-3 through age-5 returns. CESRF adult returns and smolt-to-adult survival values are understated relative to wild/natural values since these figures are not adjusted for differential harvest rates in mark selective fisheries in marine and lower Columbia River fisheries.

^{5.} Available data were not sufficient to estimate juvenile flow-entrainment and passage of wild/natural fish.

^{6.} Data for most recent years are preliminary; return data do not include age-5 adult fish.

Table 40. Estimated wild/natural smolt-to-adult return rates (SAR) based on adult detections of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns. Footnotes follow Table 41.

		Wild/Nati	ural smolts	tagged at	Roza	
Brood	Number	A	dult Returr	ns at Age ¹		
Year	Tagged	Age 3	Age 4	Age 5	Total	SAR^1
1997	310	0	1	0	1	$0.32\%^{2}$
1998	6,209	15	171	14	200	3.22%
1999	2,179	2	8	0	10	0.46%
2000	8,718	1	51	1	53	0.61%
2001	7,804	9	52	3	64	0.82%
2002	3,931	2	46	4	52	1.32%
2003	1,733	0	6	1	7	0.40%
2004	2,333	1	8	1	10	0.43%
2005	1,200	0	8	0	8	0.67%
2006	1,675	12	33	2	47	2.81%
2007	$3,795^{a}$	6	47	2	55	1.45%
2008	105	0	1	0	1	0.95%
2009	2,087	0	3	1	4	0.19%
2010	2,647	4	22	1	27	1.02%
2011	2,473	1	9	1	11	0.44%
2012			No Relea	ases		
2013	524	1	5	0	6	1.15%
2014	136	0	0	0	0	0.00%
2015	181	0	0	0	0	0.00%
2016	382	0	1	0	1	0.26%
2017	292	2	0	0	2	0.68%
2018	253	0	3		3	1.19%
2019	1,259	2				
2020	341					

a. Includes 1752 fish tagged and released in late August and early Sept.

Table 41. Estimated CESRF smolt-to-adult return rates (SAR) based on adult detections of PIT tagged fish. Roza tagged smolts to Bonneville Dam adult returns.

		CESRE	F smolts tag	gged at Ro	za	
Brood	Number	Ad	dult Return	is at Age ¹		
Year	Tagged	Age 3	Age 4	Age 5	Total	SAR^1
1997	407	0	2	0	2	$0.49\%^{2}$
1998	2,999	5	42	2	49	1.63%
1999	1,744	1	0	0	1	0.06%
2000	1,503	0	1	0	1	0.07%
2001	2,146	0	4	0	4	0.19%
2002	2,201	4	5	0	9	0.41%
2003	1,418	0	3	1	4	0.28%
2004	4,194	3	13	0	16	0.38%
2005	2,358	0	3	0	3	0.13%
2006	4,130	32	31	2	65	1.57%
2007	3,736	10	21	0	31	0.83%
2008	1,071	4	3	0	7	0.65%
2009	3,641	2	4	0	6	0.16%
2010	4,064	4	13	1	18	0.44%
2011	513	0	0	0	0	0.00%
2012	201	0	0	0	0	0.00%
2013	1,432	0	0	0	0	0.00%
2014	1,104	0	3	0	3	0.27%
2015	1,783	2	2	0	4	0.22%
2016	2,578	1	0	0	1	0.04%
2017	2,238	2	4	0	6	0.27%
2018	2,386	6	8		14	0.59%
2019	2,238	1				
2020	4,465					

^{1.} CESRF adult returns and smolt-to-adult survival values are understated relative to wild/natural values since these figures are not adjusted for differential harvest rates in mark selective fisheries in marine and lower Columbia River fisheries.

^{2.} The reliability of the 400kHz detection gear precluded an accurate accounting of all 1997 brood PIT returns. Therefore, this is not a true SAR. It is presented for relative within-year comparison only and should NOT be compared to SARs for other years.

Table 42. Overall McNary Dam (MCN) smolt to Bonneville Dam adult (BOA) return rates (SAR) based on juvenile and adult detections of wild/natural Yakima R. spring Chinook PIT-tagged and released at Roza Dam (Table B.77 in McCann et al. 2022).

		MCN-t	o-BOA witho	ut Jacks	MCN	-to-BOA with	Jacks	
Juvenile migration	Smolts arriving	%SAR	Non-para	metric CI	- %SAR	Non-para	Non-parametric CI	
year	MCN ^A	Estimate	90% LL	90% UL	Estimate	90% LL	90% UL	
2000	2,581	6.82	6.04	7.72	7.40	6.58	9.34	
2001	521	1.54	0.75	2.52	1.92	0.98	3.04	
2002	2,130	2.25	1.75	2.83	2.30	1.79	2.87	
2003	2,143	2.47	1.97	3.03	2.89	2.34	3.50	
2004	1,297	3.70	2.90	4.57	3.78	2.94	4.64	
2005	521	1.34	0.57	2.22	1.34	0.57	2.22	
2006	565	1.59	0.74	2.53	1.77	0.87	2.80	
2007	362	1.93	0.84	3.17	1.93	0.84	3.17	
2008	509	6.87	4.97	8.80	9.23	7.05	11.40	
2009	983	4.99	3.85	6.29	5.60	4.35	6.97	
2010 ^B								
2011	411	0.97	0.23	1.82	0.97	0.23	1.82	
2012	826	2.79	1.89	3.88	3.27	2.28	4.43	
2013	704	1.42	0.70	2.19	1.56	0.82	2.37	
2014 ^B								
2015	238	2.10	0.57	4.11	2.52	0.76	4.86	
2016 ^B								
2017 ^B								
2018	160	0.62	0.00	2.40	0.62	0.00	2.00	
2019 ^C	77	0.00	0.00	3.82	2.60	0.00	6.14	
2020 ^D	132	2.27	0.00	6.75	2.27	0.00	6.75	
Arithmetic mean	(incl. zeros)	2.57			3.06			
Geometric mean	(excl. zeros)	2.22			2.44			

A Estimated population of tagged study fish alive to MCN tailrace (included fish detected at the dam and those estimated to pass undetected). CJS estimation of S1 uses PIT-tags detected on bird colonies in the Columbia River estuary and adult detections to augment the NOAA Trawl detections below BON and the Logit link.

B Too few or no PIT-tags released to obtain reliable estimate of smolts arriving at MCN. Therefore, estimate of SAR not possible.

C Where point estimate is 0.0, 90% confidence intervals are Clopper-Pearson binomial confidence intervals (Clopper and Pearson 1934).

^D Incomplete, 2-salt returns through September 10, 2022.

Table 43. Overall McNary Dam smolt (MCN) to Bonneville Dam adult (BOA) return rates (SAR) based on juvenile and adult detections of CESRF PIT-tagged spring Chinook (Table B.83 in McCann et al. 2022).

		MCN-to	MCN-to-BOA without Jacks		MCN-t	to-BOA with	Jacks
Juvenile migration	Smolts arriving	%SAR	Non-para	metric CI	%SAR	Non-parametric CI	
year	MCN ^A	Estimate	90% LL	90% UL	Estimate	90% LL	90% UL
2000	14,416	3.61	3.34	3.91	3.95	3.65	4.26
2001	9,269	0.28	0.20	0.37	0.29	0.20	0.38
2002	11,753	1.36	1.18	1.54	1.72	1.52	1.91
2003	11,974	0.59	0.48	0.71	0.86	0.72	1.00
2004	7,986	1.54	1.31	1.78	1.85	1.60	2.11
2005	5,789	0.66	0.48	0.84	0.78	0.59	0.98
2006	10,285	1.23	1.06	1.43	1.59	1.39	1.81
2007	12,654	1.01	0.87	1.16	1.51	1.32	1.69
2008	11,752	3.15	2.86	3.43	5.03	4.64	5.39
2009	15,386	1.82	1.64	2.00	2.29	2.08	2.50
2010	12,479	1.51	1.33	1.71	2.53	2.27	2.78
2011	11,886	0.93	0.79	1.08	1.20	1.03	1.37
2012	15,736	1.22	1.08	1.37	1.76	1.57	1.94
2013	13,261	1.38	1.20	1.54	1.95	1.74	2.17
2014	12,856	0.58	0.48	0.70	0.84	0.72	0.98
2015	10,639	1.02	0.85	1.20	1.86	1.62	2.11
2016	13,837	0.87	0.75	1.01	1.52	1.34	1.71
2017	11,199	0.62	0.50	0.75	0.74	0.61	0.89
2018	11,839	0.54	0.43	0.64	0.84	0.70	0.97
2019	10,270	0.77	0.62	0.93	1.15	0.96	1.34
2020 ^B	11,778	1.18	0.94	1.41	1.75	1.44	2.04
Arithmetic mea	an (incl. zeros)	1.23			1.72		
Geometric mea	n (excl. zeros)	1.04			1.44		

A Estimated population of tagged study fish alive to MCN tailrace (included fish detected at the dam and those estimated to pass undetected). CJS estimation of S1 uses PIT-tags detected on bird colonies in the Columbia River estuary and adult detections to augment the NOAA Trawl detections below BON and the Logit link function.

B Incomplete, 2-salt returns through September 10, 2022.

Table 44. Estimated release-to-adult survival of PIT-tagged CESRF fish (CESRF tagged smolts to Bonneville and Roza Dam adult returns).

Brood	Number	Ad	ult Dete	ctions at	Bonn. l	Dam	Ad	ult Detec	ctions at	Roza D	am
Year	Tagged1	Age3	Age4	Age5	Total	SAR	Age3	Age4	Age5	Total	SAR
1997 ²	39,892	18	182	4	204	0.51%	65	517	16	598	1.50%
1998	37,388	49	478	48	575	1.54%	54	310	34	398	1.06%
1999	38,793	1	25	1	27	0.07%	1	22	0	23	0.06%
2000	37,582	42	159	2	203	0.54%	37	112	1	150	0.40%
2001	36,523	32	71	0	103	0.28%	22	58	0	80	0.22%
2002^{3}	39,003	25	119	4	148	0.38%	15	80	2	97	0.25%
2003	38,916	7	37	1	45	0.12%	3	27	1	31	0.08%
2004	36,426	37	123	4	164	0.45%	24	98	3	125	0.34%
2005	39,119	63	126	2	191	0.49%	44	96	2	142	0.36%
2006	38,595	221	354	15	590	1.53%	187	264	11	462	1.20%
2007	38,618	73	279	3	355	0.92%	55	182	3	240	0.62%
2008	39,013	135	192	3	330	0.85%	81	132	2	215	0.55%
2009	36,239	32	110	3	145	0.40%	23	85	2	110	0.30%
2010	38,737	85	187	6	278	0.72%	62	142	3	207	0.53%
2011	38,165	77	191	2	270	0.71%	57	122	2	181	0.47%
2012	38,343	33	75	0	108	0.28%	10	59	0	69	0.18%
2013	38,278	90	110	0	200	0.52%	68	84	0	152	0.40%
2014	38,119	92	121	1	214	0.56%	64	66	1	131	0.34%
2015	38,029	15	69	0	84	0.22%	6	51	0	57	0.15%
2016	38,061	34	64	1	99	0.26%	20	42	0	62	0.16%
2017	37,709	39	86	1	126	0.33%	26	67	0	93	0.25%
2018	35,886	68	144		212	0.59%	47	90		137	0.38%
2019	37,005	34					24				

^{1.} When tag detection data are available, this is the number of unique PIT tags physically detected leaving the acclimation sites. Otherwise, this is the number of fish PIT tagged less documented mortalities of PIT-tagged fish from tagging to release.

^{2.} BY1997 used 400 kHz tags and Bonneville Dam was not fully configured for adult detection of this type of tag; therefore we saw more detections at Roza Dam where fish were manually wanded for adult PIT detections.

^{3.} Includes HxH fish beginning with this brood year.

Table 45. Estimated release-to-adult survival of non-PIT-tagged CESRF fish (CESRF tagged smolts to Roza Dam adult returns).

Brood	Number	A	Adult Ret	turns to I	Roza Dan	n
Year	Tagged1	Age3	Age4	Age5	Total	SAR
1997 ²	346,156	623	5,663	120	6,406	1.85%
1998	552,295	936	5,834	534	7,304	1.32%
1999	719,996	103	652	13	768	0.11%
2000	796,703	1,005	2,764	69	3,837	0.48%
2001	333,713	290	791	9	1,091	0.33%
2002^{3}	797,901	332	1,771	135	2,238	0.28%
2003	785,776	115	1,568	14	1,696	0.22%
2004	749,022	683	3,688	202	4,574	0.61%
2005	820,883	1,012	5,302	22	6,336	0.77%
2006	604,200	2,383	6,427	287	9,096	1.51%
2007	732,647	1,024	5,645	87	6,756	0.92%
2008	810,292	1,552	3,680	76	5,308	0.66%
2009	796,702	389	3,106	67	3,562	0.45%
2010	756,044	721	3,618	28	4,368	0.58%
2011	731,017	780	2,318	51	3,149	0.43%
2012	764,373	172	2,274	12	2,458	0.32%
2013	608,477	718	2,386	0	3,104	0.51%
2014	647,111	644	1,511	10	2,165	0.33%
2015	616,918	237	1,242	0	1,479	0.24%
2016	631,147	158	1,211	69	1,438	0.23%
2017	672,960	366	1,924	0	2,290	0.34%
2018	606,534	587	2,248		2,835	0.47%
2019	513,393	465				

^{1.} These fish were adipose fin-clipped, coded-wire tagged, and (beginning with 4 of 16 ponds in 1998) elastomer eye tagged. This is the number of fish physically counted at tagging.

^{2.} BY1997 used 400 kHz tags and Bonneville Dam was not fully configured for adult detection of this type of tag; therefore we saw more detections at Roza Dam where fish were manually wanded for adult PIT detections.

^{3.} Includes HxH fish beginning with this brood year.

Harvest Monitoring

Yakima Basin Fisheries

For spring fisheries in the Yakima River Basin, both the WDFW and the Yakama Nation employ two technicians and one biologist to monitor and evaluate in-basin harvest in the respective sport and tribal fisheries. Harvest monitoring consists of on-the-water surveys to collect catch data and to record tag information (e.g., elastomer, CWT, etc.) where possible for adipose-clipped fish. Survey data are expanded for time, area, and effort using standard methods to derive estimates of total in-basin harvest by fishery type (sport and tribal) and catch type (CESRF or wild denoted by adipose presence/absence). Results are presented in Table 46.

Columbia Basin Fisheries

Standard run reconstruction techniques are employed to derive estimates of harvest from the Columbia River mouth to the Yakima River mouth for spring Chinook. Data from databases maintained by the *United States versus Oregon* Technical Advisory Committee (TAC) are used to obtain harvest rate estimates downstream of the Yakima River for the aggregate Yakima River spring Chinook population and to estimate passage losses from Bonneville through McNary reservoirs. These data, combined with the Prosser Dam counts and estimated harvest below Prosser, are used to derive a Columbia River mouth run size estimate and Columbia River mainstem harvest estimate for Yakima spring Chinook. Results are presented in Table 47.

Table 46. Spring Chinook harvest in the Yakima River Basin, 1985-present.

	Tribal		Non-Tribal		River Totals			Harvest
Year	CESRF	Wild	CESRF	Wild	CESRF	Wild	Total	Rate ¹
1985	CLSKI	865	CLSIN	0	CLSKI	865	865	19.0%
1986		1,340		0		1,340	1,340	14.2%
1987		517		0		517	517	11.6%
1988		444		0		444	444	10.5%
1989		747		0		747	747	15.2%
1990		663		0		663	663	15.2%
1991		32		0		32	32	1.1%
1992		345		0		345	345	7.5%
1993		129		0		129	129	3.3%
1994		25		0		25	25	1.9%
1995		79		0		79	79	11.9%
1996		475		0		475	475	14.9%
1997		575		0		575	575	18.1%
1998		188		0		188	188	9.9%
1999		604		0		604	604	21.7%
2000	53	2,305		100	53	2,405	2,458	12.9%
2001	572	2,034	1,252	772	1,825	2,806	4,630	19.9%
2002	1,373	1,207	492	36^{2}	1,865	1,243	3,108	20.6%
2003	134	306	0	0	134	306	440	6.3%
2004	289	712	569	109^{2}	858	820	1,679	11.0%
2005	46	428	0	0	46	428	474	5.4%
2006	246	354	0	0	246	354	600	9.5%
2007	123	156	0	0	123	156	279	6.5%
2008	521	414	586	11^{2}	1,107	426	1,532	17.8%
2009	1,089	715	541	8^2	1,630	722	2,353	19.4%
2010	345	194	1,154	48^{2}	1,499	241	1,741	13.2%
2011	1,361	1,261	1,579	179^{2}	2,940	1,440	4,380	24.4%
2012	1,220	1,302	735	63^{2}	1,955	1,364	3,320	27.5%
2013	846	975	786	46^{2}	1,632	1,021	2,653	25.9%
2014	576	715	826	54^{2}	1,402	769	2,171	19.2%
2015	121	271	385	38^{2}	506	309	815	8.7%
2016	103	185	132	24^{2}	235	209	444	6.4%
2017	217	201	750	104^{2}	967	305	1,272	17.8%
2018	154	115	259	20^{2}	413	136	548	15.2%
2019	24	16	0	0	24	16	40	1.8%
2020	26	42	0	0	26	42	68	2.0%
2021	9	7	0	0	9	7	16	0.4%
2022	61	85	300	25	361	110	471	7.7%
Mean	430	531	470	70	900	596	1,119	12.5%

^{1.} Harvest rate is the total Yakima Basin harvest as a percentage of the Yakima River mouth run size.

^{2.} Includes estimate of post-release mortality of unmarked fish.

Table 47. Estimated run size, harvest, and harvest rates of Yakima Basin spring Chinook in Columbia River mainstem and terminal area fisheries, 1986-present.

	Columbia	Col. R. Mouth	Columbia Dasin			Col. Basin				
	R. Mouth	to BON	McNary	R. Mouth	River	Har	vest Sum	mary	Harves	t Rate
Year	Run Size	Harvest	Harvest	Run Size	Harvest	Total	Wild	CESRF	Total	Wild
1986	13,567	280	802	9,439	1,340	2,423	2,423	0	17.9%	17.9%
1987	6,160	96	378	4,443	517	991	991	0	16.1%	16.1%
1988	5,674	363	401	4,246	444	1,208	1,208	0	21.3%	21.3%
1989	8,919	213	683	4,914	747	1,642	1,642	0	18.4%	18.4%
1990	6,954	352	480	4,372	663	1,495	1,495	0	21.5%	21.5%
1991	4,650	184	291	2,906	32	507	507	0	10.9%	10.9%
1992	6,207	103	380	4,599	345	827	827	0	13.3%	13.3%
1993	5,132	44	315	3,919	129	488	488	0	9.5%	9.5%
1994	2,251	87	113	1,302	25	225	225	0	10.0%	10.0%
1995	1,394	1	69	666	79	149	149	0	10.7%	10.7%
1996	5,898	6	309	3,179	475	790	790	0	13.4%	13.4%
1997	5,192	3	348	3,173	575	926	926	0	17.8%	17.8%
1998	2,867	3	143	1,903	188	333	333	0	11.6%	11.6%
1999	4,160	4	198	2,781	604	806	806	0	19.4%	19.4%
2000	28,783	58	1,782	19,101	2,458	4,298	4,174	124	14.9%	14.9%
2001	32,253	969	4,230	24,147	4,630	9,830	5,654	4,176	30.5%	28.6%
2002	25,307	1,278	2,923	15,815	3,108	7,309	2,757	4,551	28.9%	24.0%
2003	10,277	286	902	7,227	440	1,628	987	641	15.8%	14.7%
2004	24,212	1,023	2,329	16,820	1,679	5,031	2,876	2,154	20.8%	16.2%
2005	13,302	354	893	9,588	474	1,721	1,363	358	12.9%	12.1%
2006	12,149	310	898	6,593	600	1,808	1,038	770	14.9%	13.2%
2007	5,218	174	477	4,457	279	930	460	470	17.8%	15.5%
2008	12,553	1,204	1,870	9,273	1,532	4,607	1,360	3,247	36.7%	25.2%
2009	13,693	1,210	1,089	11,395	2,353	4,651	1,318	3,333	34.0%	23.9%
2010	18,568	1,631	2,778	13,746	1,741	6,150	1,517	4,633	33.1%	21.8%
2011	23,322	1,098	1,794	18,520	4,380	7,272	2,590	4,682	31.2%	22.4%
2012	17,202	850	1,622	12,612	3,320	5,792	2,364	3,428	33.7%	26.7%
2013	14,924	879	1,035	10,602	2,653	4,567	1,849	2,718	30.6%	23.7%
2014	17,303	716	2,208	11,868	2,171	5,095	2,089	3,006	29.4%	22.4%
2015	11,992	476	1,437	9,848	815	2,727	1,454	1,273	22.7%	17.8%
2016	10,110	454	961	7,281	444	1,859	950	910	18.4%	15.1%
2017	12,196	493	924	7,544	1,272	2,688	855	1,833	22.0%	13.5%
2018	6,236	248	638	3,737	548	1,435	460	976	23.0%	16.4%
2019	3,756	68	259	2,250	40	367	130	237	9.8%	8.6%
2020	5,770	62	342	3,413	68	472	273	199	8.2%	7.6%
2021	5,616	173	333	4,026	16	522	191	331	9.3%	7.2%
20221	8,594	255	817	6,432	471	1,543	591	953	18.0%	12.2%
Mean	11,145	433	1,012	7,787	1,126	2,570	1,354	1,216	19.7%	16.6%

^{1.} Preliminary.

Marine Fisheries

Based on available CWT information, harvest managers have long assumed that Columbia River spring Chinook are not harvested in any abundance in marine fisheries as the timing of their ocean migration does not generally overlap either spatially or temporally with the occurrence of marine fisheries (TAC 1997). The Regional Mark Information System (RMIS) will be queried regularly for any CWT recoveries of CESRF releases in ocean or Columbia River mainstem fisheries. Table 48 gives the results of a query of the RMIS database run on Dec. 15, 2022 for CESRF spring Chinook CWTs released in brood years 1997-2017 and Figure 8 shows recovery locations for CWTs recovered in marine fisheries 2008-2012. Based on the information reported to RMIS to date, it is believed that marine harvest accounts for about 0-4% of the total harvest of Yakima Basin spring Chinook. However, a trend towards an increased proportion of harvest in marine fisheries is apparent since brood year 2013. This may be attributable to a number of factors including: preliminary data, or changes in fish distribution, ecological conditions, or sampling rates. CWT recovery data for brood year 2018 were considered too incomplete to report at this time.

Table 48. Marine and freshwater recoveries of CWTs from brood year 1997-2017 releases of spring Chinook from the CESRF as reported to the Regional Mark Information System (RMIS) Dec. 15, 2022.

Brood	Observ	Observed CWT Recoveries			ed CWT F	Recoveries
Year	Marine	Fresh	Marine %	Marine	Fresh	Marine %
1997	5	56	8.2%	8	321	2.4%
1998	2	53	3.6%	2	228	0.9%
1999		2	0.0%		9	0.0%
2000		14	0.0%		34	0.0%
2001		1	0.0%		1	0.0%
2002		7	0.0%		36	0.0%
2003		4	0.0%		10	0.0%
2004	2	154	1.3%	15	526	2.8%
2005	2	96	2.0%	2	304	0.7%
2006	14	328	4.1%	16	1160	1.4%
2007	8	145	5.2%	13	1139	1.1%
2008	5	245	2.0%	7	1634	0.4%
2009	4	91	4.2%	7	588	1.2%
2010	4	164	2.4%	9	948	0.9%
2011	5	186	2.6%	5	1030	0.5%
2012	4	73	5.2%	2	273	0.7%
2013	9	65	12.2%	20	534	3.6%
2014	4	71	5.3%	8	533	1.5%
2015	2	24	7.7%	2	50	3.8%
2016	1	26	3.7%	5	63	7.4%
20171	3	20	13.0%	2	92	2.1%

^{1.} Reporting of CWT recoveries to the RMIS database typically lags actual fisheries by one to two years. Therefore, CWT recovery data for brood year 2017 are considered preliminary or incomplete.

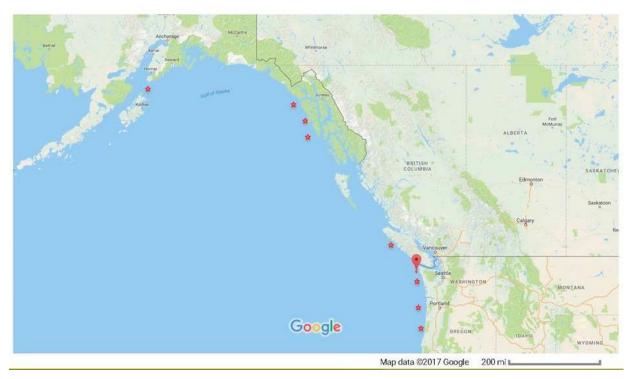


Figure 9. Marine recovery locations of coded-wire-tagged CESRF spring Chinook, recovery years 2008-2012.

Literature Cited

- BPA (Bonneville Power Administration). 1990. Yakima-Klickitat Production Project Preliminary Design Report and Appendices. Bonneville Power Administration, Portland, OR.
- Copeland, T., D.A. Venditti, and B.R. Barnett. 2014. The Importance of Juvenile Migration Tactics to Adult Recruitment in Stream-Type Chinook Salmon Populations. Transactions of the American Fisheries Society 143:1460-1475.
- Knudsen C.M., S.L. Schroder, T.N. Pearsons, J.A. Rau, A.L. Fritts, and C.R. Strom. 2003. Monitoring Phenotypic and Demographic Traits of upper Yakima River Hatchery and Wild Spring Chinook: Gametic and juvenile Traits. YKFP Annual Report 2002.
- Knudsen, C.M. (editor). 2004. Reproductive Ecology of Yakima River hatchery and wild spring Chinook. Annual Report 2003, Project Number 1995-063-25. BPA Report DOE/BP-00013756-3.
- Knudsen, C. M., M. V. Johnston, S. L. Schroder, W. J. Bosch, D. E. Fast, and C. R. Strom. 2009. Effects of Passive Integrated Transponder Tags on Smolt-to-Adult Recruit Survival, Growth, and Behavior of Hatchery Spring Chinook Salmon. North American Journal of Fisheries Management 29:658-669.
- Maynard, D. J., T. A. Flagg, and C. V. W. Mahnken. 1995. A review of seminatural culture strategies for enhancing the post-release survival of anadromous salmonids. Am. Fish. Soc. Symp. 15:307-314.
- McCann, J., B. Chockley, E. Cooper, G. Scheer, S. Haeseker, B. Lessard, T. Copeland, J. Ebel, A. Storch, and D. Rawding. 2022. <u>Comparative Survival Study</u> of PIT-tagged Spring/Summer/Fall Chinook, Summer Steelhead, and Sockeye 2022 Annual Report (BPA Project #19960200). Fish Passage Center, Portland, Oregon.
- NPPC (Northwest Power Planning Council). 1982. Columbia River Basin Fish and Wildlife Program. Adopted November 15, 1982. Northwest Power Planning Council, Portland, OR.
- Pandit, S. 2020. 2019 Annual Chandler Certification for Yearling Out-migrating Spring Chinook Smolt. Appendix C in Blodgett et al., editors, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Yakima Subbasin, Project Number 1995-063-25, 378 electronic pages (https://www.cbfish.org/Document.mvc/Viewer/P177850).
- TAC (United States versus Oregon Technical Advisory Committee). 1997. 1996 All Species Review, Columbia River Fish Management Plan. August 4, 1997. Columbia River Inter-Tribal Fish Commission, Portland, Oregon.

Brood Year		Accl. Pond	Trea /Avg	tmen BKD			Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2006	CLE01	CFJ04	BIO	WW	3.5	Right	Red	Snout	3/15/2008	5/14/2008	190101	2,000	36,945	38,607
2006	CLE02	CFJ03	EWS	WW	3.5	Left	Red	Snout	3/15/2008	5/14/2008	190102	2,000	31,027	32,790
2006	CLE03	ESJ02	BIO	WW	3.2	Right	Green	Snout	3/15/2008	5/14/2008	190103	2,000	36,931	38,762
2006	CLE04	ESJ01	EWS	WW	3.2	Left	Green	Snout	3/15/2008	5/14/2008	190104	2,000	29,635	31,400
2006	CLE05	JCJ02	BIO	WW	3.3	Right	Orange	Snout	3/15/2008	5/14/2008	190105	2,000	36,735	38,383
2006	CLE06	JCJ01	EWS	WW	3.3	Left	Orange	Snout	3/15/2008	5/14/2008	190106	2,000	28,984	30,680
2006	CLE07	ESJ04	BIO	WW	3.4	Right	Green	Snout	3/15/2008	5/14/2008	190107	2,000	38,212	40,006
2006	CLE08	ESJ03	EWS	WW	3.4	Left	Green	Snout	3/15/2008	5/14/2008	190108	2,000	32,726	34,519
2006	CLE09	CFJ02	BIO	WW	3.4	Right	Red	Snout	3/15/2008	5/14/2008	190109	2,000	36,485	38,097
2006	CLE10	CFJ01	EWS	WW	3.4	Left	Red	Snout	3/15/2008	5/14/2008	190110	2,000	29,907	31,647
2006	CLE11	JCJ04	BIO	WW	3.3	Right	Orange	Snout	3/15/2008	5/14/2008	190111	2,000	39,491	40,703
2006	CLE12	JCJ03	EWS	WW	3.3	Left	Orange	Snout	3/15/2008	5/14/2008	190112	2,000	33,418	35,273
2006	CLE13	ESJ06	BIO	WW	3.4	Right	Green	Snout	3/15/2008	5/14/2008	190113	2,000	38,609	39,841
2006	CLE14	ESJ05	EWS	WW	3.4	Left	Green	Snout	3/15/2008	5/14/2008	190114	2,000	31,573	33,404
2006	CLE15	JCJ06	BIO	WW	3.4	Right	Orange	Snout	3/15/2008	5/14/2008	190115	2,000	36,844	38,619
2006	CLE16	JCJ05	EWS	WW	3.4	Left	Orange	Snout	3/15/2008	5/14/2008	190116	2,000	29,857	31,630
2006	CLE17	CFJ06	BIO	HH	3.2	Right	Red	Posterior Dorsal	3/15/2008	5/14/2008	190117	4,000	34,299	38,045
2006	CLE18	CFJ05	EWS	HH	3.2	Left	Red	Posterior Dorsal	3/15/2008	5/14/2008	190118	4,000	26,643	30,389

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; EWS = EWOS (EWOS Canada Ltd.). All fish were switched to BioVita diet beginning May 3, 2007. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2021.

Brood Year	C.E. Pond	Accl. Pond		tmen BKL			Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2007	CLE01	JCJ06	BIO	ww	2.8	Right	Orange	Snout	3/15/2009	5/15/2009	190151	2,000	38,044	39,840
2007	CLE02	JCJ05	STF	WW	2.8	Left	Orange	Snout	3/15/2009	5/15/2009	190152	2,000	40,066	41,843
2007	CLE03	JCJ04	BIO	WW	2.7	Right	Orange	Snout	3/15/2009	5/15/2009	190153	2,000	40,843	42,647
2007	CLE04	JCJ03	STF	WW	2.7	Left	Orange	Snout	3/15/2009	5/15/2009	190154	2,000	40,196	41,979
2007	CLE05	CFJ06	BIO	WW	2.8	Right	Red	Snout	3/15/2009	5/15/2009	190155	2,000	40,855	42,717
2007	CLE06	CFJ05	STF	WW	2.8	Left	Red	Snout	3/15/2009	5/15/2009	190156	2,000	40,475	42,345
2007	CLE07	ESJ06	BIO	WW	2.6	Right	Green	Snout	3/15/2009	5/15/2009	190157	2,000	42,549	44,387
2007	CLE08	ESJ05	STF	WW	2.6	Left	Green	Snout	3/15/2009	5/15/2009	190158	2,000	43,243	45,080
2007	CLE09	CFJ02	BIO	HH	2.7	Right	Red	Posterior Dorsal	3/15/2009	5/15/2009	190159	4,000	43,803	47,625
2007	CLE10	CFJ01	STF	HH	2.7	Left	Red	Posterior Dorsal	3/15/2009	5/15/2009	190160	4,000	43,256	47,038
2007	CLE11	ESJ02	BIO	WW	2.8	Right	Green	Snout	3/15/2009	5/15/2009	190161	2,000	41,098	42,945
2007	CLE12	ESJ01	STF	WW	2.8	Left	Green	Snout	3/15/2009	5/15/2009	190162	2,001	40,535	42,405
2007	CLE13	ESJ04	BIO	WW	2.7	Right	Green	Snout	3/15/2009	5/15/2009	190163	2,009	39,308	41,190
2007	CLE14	ESJ03	STF	WW	2.7	Left	Green	Snout	3/15/2009	5/15/2009	190164	2,000	36,663	38,533
2007	CLE15	JCJ02	BIO	WW	2.9	Right	Orange	Snout	3/15/2009	5/15/2009	190165	2,000	40,312	42,083
2007	CLE16	JCJ01	STF	WW	2.9	Left	Orange	Snout	3/15/2009	5/15/2009	190166	2,000	40,594	42,426
2007	CLE17	CFJ03	STF	WW	2.8	Right	Red	Snout	3/15/2009	5/15/2009	190167	2,000	40,687	42,561
2007	CLE18	CFJ04	BIO	WW	2.8	Left	Red	Snout	3/15/2009	5/15/2009	190168	2,000	41,704	43,621

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond		itmen BKL	-		Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2008	CLE01	ESJ01	STF	WW	3.3	Right	Orange	Snout	3/15/2010	5/11/2010	190191	2,000	44,917	46,704
2008	CLE02	ESJ02	BIO	WW	3.3	Left	Orange	Snout	3/15/2010	5/11/2010	190192	2,000	45,576	47,414
2008	CLE03	CFJ03	STF	WW	3.2	Right	Red	Snout	3/15/2010	5/11/2010	190193	2,000	44,099	45,931
2008	CLE04	CFJ04	BIO	WW	3.2	Left	Red	Snout	3/15/2010	5/11/2010	190194	2,000	42,464	44,271
2008	CLE05	JCJ05	STF	WW	3.0	Right	Green	Snout	3/15/2010	5/11/2010	190195	2,000	46,118	47,936
2008	CLE06	JCJ06	BIO	WW	3.0	Left	Green	Snout	3/15/2010	5/11/2010	190196	2,000	43,708	45,466
2008	CLE07	ESJ05	STF	WW	3.2	Right	Orange	Snout	3/15/2010	5/11/2010	190197	2,000	48,468	50,299
2008	CLE08	ESJ06	BIO	WW	3.2	Left	Orange	Snout	3/15/2010	5/11/2010	190198	2,000	47,611	49,419
2008	CLE09	CFJ05	STF	HH	2.9	Right	Red	Posterior Dorsal	3/15/2010	5/11/2010	190199	4,000	45,169	48,942
2008	CLE10	CFJ06	BIO	HH	2.9	Left	Red	Posterior Dorsal	3/15/2010	5/11/2010	190201	4,000	44,493	48,254
2008	CLE11	JCJ01	STF	WW	3.3	Right	Green	Snout	3/15/2010	5/11/2010	190202	2,000	44,583	46,413
2008	CLE12	JCJ02	BIO	WW	3.3	Left	Green	Snout	3/15/2010	5/11/2010	190203	2,000	45,086	46,856
2008	CLE13	ESJ03	STF	WW	3.1	Right	Orange	Snout	3/15/2010	5/11/2010	190204	2,000	45,518	47,317
2008	CLE14	ESJ04	BIO	WW	3.1	Left	Orange	Snout	3/15/2010	5/11/2010	190205	2,000	44,879	46,704
2008	CLE15	CFJ01	STF	WW	3.2	Right	Red	Snout	3/15/2010	5/11/2010	190206	2,000	45,169	46,893
2008	CLE16	CFJ02	BIO	WW	3.2	Left	Red	Snout	3/15/2010	5/11/2010	190207	2,000	44,149	45,962
2008	CLE17	JCJ03	STF	WW	3.2	Right	Green	Snout	3/15/2010	5/11/2010	190208	2,000	45,807	47,580
2008	CLE18	JCJ04	BIO	WW	3.2	Left	Green	Snout	3/15/2010	5/11/2010	190209	2,000	45,157	46,944

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2021.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2009	CLE01	CFJ05	STF	НН	3.0	Right	Red	Posterior Dorsal	3/15/2011	5/16/2011	190215	4,000	40,109	43,965
2009	CLE02	CFJ06	BIO	HH	3.0	Left	Red	Posterior Dorsal	3/15/2011	5/16/2011	190216	4,000	41,012	44,806
2009	CLE03	JCJ01	STF	WW	3.0	Right	Orange	Snout	3/15/2011	3/31/2011	190217	2,000	37,245	39,048
2009	CLE04	JCJ02	BIO	WW	3.0	Left	Orange	Snout	3/15/2011	3/31/2011	190218	2,000	42,212	44,053
2009	CLE05	CFJ01	STF	WW	3.2	Right	Red	Snout	3/15/2011	5/16/2011	190219	2,000	47,016	48,761
2009	CLE06	CFJ02	BIO	WW	3.2	Left	Red	Snout	3/15/2011	5/16/2011	190220	2,000	46,733	48,569
2009	CLE07	ESJ05	STF	WW	3.1	Right	Green	Snout	3/15/2011	5/16/2011	190221	2,000	46,302	48,089
2009	CLE08	ESJ06	BIO	WW	3.1	Left	Green	Snout	3/15/2011	5/16/2011	190222	2,000	46,969	48,721
2009	CLE09	ESJ01	STF	WW	3.0	Right	Green	Snout	3/15/2011	5/16/2011	190223	2,000	43,612	45,379
2009	CLE10	ESJ02	BIO	WW	3.0	Left	Green	Snout	3/15/2011	5/16/2011	190224	2,000	43,173	44,962
2009	CLE11	JCJ05	STF	WW	3.1	Right	Orange	Snout	3/15/2011	3/31/2011	190225	2,000	47,585	49,306
2009	CLE12	JCJ06	BIO	WW	3.1	Left	Orange	Snout	3/15/2011	3/31/2011	190226	2,000	47,644	49,434
2009	CLE13	ESJ03	STF	WW	3.2	Right	Green	Snout	3/15/2011	5/16/2011	190227	2,000	45,277	47,036
2009	CLE14	ESJ04	BIO	WW	3.2	Left	Green	Snout	3/15/2011	5/16/2011	190228	2,000	45,529	47,208
2009	CLE15	JCJ03	STF	WW	3.1	Right	Orange	Snout	3/15/2011	3/31/2011	190229	2,000	43,825	45,592
2009	CLE16	JCJ04	BIO	WW	3.1	Left	Orange	Snout	3/15/2011	3/31/2011	190230	2,000	43,209	44,990
2009	CLE17	CFJ03	STF	WW	3.2	Right	Red	Snout	3/15/2011	5/16/2011	190231	2,000	45,587	47,451
2009	CLE18	CFJ04	BIO	WW	3.2	Left	Red	Snout	3/15/2011	5/16/2011	190232	2,000	43,952	45,571

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix A. Tag and Release Information by Cle Elum Pond Id, Brood Years 2006-2021.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2010	CLE01	CFJ05	STF	WW	4.2	Right	Red	Snout	3/15/2012	5/14/2012	190256	2,000	40,221	41,972
2010	CLE02	CFJ06	BIO	WW	4.2	Left	Red	Snout	3/15/2012	5/14/2012	190257	2,000	40,845	42,664
2010	CLE03	CFJ03	STF	HH	4.0	Right	Red	Posterior Dorsal	3/15/2012	5/14/2012	190258	4,000	43,725	47,415
2010	CLE04	CFJ04	BIO	HH	4.0	Left	Red	Posterior Dorsal	3/15/2012	5/14/2012	190259	4,000	40,976	44,615
2010	CLE05	ESJ01	STF	WW	4.2	Right	Green	Snout	3/15/2012	5/14/2012	190260	2,000	40,710	42,374
2010	CLE06	ESJ02	BIO	WW	4.2	Left	Green	Snout	3/15/2012	5/14/2012	190261	2,000	40,419	42,157
2010	CLE07	JCJ01	STF	WW	4.0	Right	Orange	Snout	3/15/2012	5/14/2012	190262	2,000	43,833	45,471
2010	CLE08	JCJ02	BIO	WW	4.0	Left	Orange	Snout	3/15/2012	5/14/2012	190263	2,000	43,815	45,573
2010	CLE09	ESJ03	STF	WW	4.1	Right	Green	Snout	3/15/2012	5/14/2012	190264	2,000	42,528	44,257
2010	CLE10	ESJ04	BIO	WW	4.1	Left	Green	Snout	3/15/2012	5/14/2012	190265	2,000	42,649	44,443
2010	CLE11	ESJ05	STF	WW	4.2	Right	Green	Snout	3/15/2012	5/14/2012	190266	2,000	43,878	45,633
2010	CLE12	ESJ06	BIO	WW	4.2	Left	Green	Snout	3/15/2012	5/14/2012	190267	2,000	43,750	45,498
2010	CLE13	JCJ03	STF	WW	4.2	Right	Orange	Snout	3/15/2012	5/14/2012	190268	2,000	41,816	43,473
2010	CLE14	JCJ04	BIO	WW	4.2	Left	Orange	Snout	3/15/2012	5/14/2012	190269	2,000	41,052	42,772
2010	CLE15	JCJ05	STF	WW	4.1	Right	Orange	Snout	3/15/2012	5/14/2012	190270	2,000	42,894	44,603
2010	CLE16	JCJ06	BIO	WW	4.1	Left	Orange	Snout	3/15/2012	5/14/2012	190271	2,000	42,371	44,107
2010	CLE17	CFJ01	STF	WW	4.2	Right	Red	Snout	3/15/2012	5/14/2012	190272	2,000	42,329	44,128
2010	CLE18	CFJ02	BIO	WW	4.2	Left	Red	Snout	3/15/2012	5/14/2012	190273	2,000	41,829	43,626

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HH which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT		Est. Tot. Release ²
							_		- 4 4					
2011	CLE01	JCJ05	STF	WN	4.1	Right	Orange	Snout	3/15/2013	5/15/2013	190320	2,000	42,452	•
2011	CLE02	JCJ06	BIO	WN	4.1	Left	Orange	Snout	3/15/2013	5/15/2013	190321	2,000	42,217	44,056
2011	CLE03	CFJ05	STF	HC	4.0	Right	Red	Posterior Dorsal	3/15/2013	5/15/2013	190322	4,000	38,432	42,092
2011	CLE04	CFJ06	BIO	HC	4.0	Left	Red	Posterior Dorsal	3/15/2013	5/15/2013	190323	4,000	38,743	42,609
2011	CLE05	ESJ01	STF	WN	4.1	Right	Green	Snout	3/15/2013	5/15/2013	190324	2,000	38,404	40,250
2011	CLE06	ESJ02	BIO	WN	4.1	Left	Green	Snout	3/15/2013	5/15/2013	190325	2,000	37,931	39,731
2011	CLE07	CFJ01	STF	WN	4.1	Right	Red	Snout	3/15/2013	5/15/2013	190326	2,000	40,449	42,308
2011	CLE08	CFJ02	BIO	WN	4.1	Left	Red	Snout	3/15/2013	5/15/2013	190327	2,000	39,281	41,088
2011	CLE09	JCJ03	STF	WN	4.0	Right	Orange	Snout	3/15/2013	5/15/2013	190328	2,000	43,588	45,243
2011	CLE10	JCJ04	BIO	WN	4.0	Left	Orange	Snout	3/15/2013	5/15/2013	190329	2,000	41,715	43,288
2011	CLE11	ESJ05	STF	WN	4.0	Right	Green	Snout	3/15/2013	5/15/2013	190330	2,000	40,964	42,610
2011	CLE12	ESJ06	BIO	WN	4.0	Left	Green	Snout	3/15/2013	5/15/2013	190331	2,000	40,905	42,759
2011	CLE13	CFJ03	STF	WN	4.0	Right	Red	Snout	3/15/2013	5/15/2013	190332	2,000	42,298	44,190
2011	CLE14	CFJ04	BIO	WN	4.0	Left	Red	Snout	3/15/2013	5/15/2013	190333	2,000	41,111	43,003
2011	CLE15	JCJ01	STF	WN	3.9	Right	Orange	Snout	3/15/2013	5/15/2013	190334	2,000	42,769	44,590
2011	CLE16	JCJ02	BIO	WN	3.9	Left	Orange	Snout	3/15/2013	5/15/2013	190335	2,000	42,230	44,036
2011	CLE17	ESJ03	STF	WN	4.0	Right	Green	Snout	3/15/2013	5/15/2013	190336	2,000	39,770	41,479
2011	CLE18	ESJ04	BIO	WN	4.0	Left	Green	Snout	3/15/2013	5/15/2013	190337	2,000	39,823	41,625

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT		Est. Tot. Release ²
2012	CLE01	ESJ03	STF	WN	3.7	Right	Green	Snout	3/15/2014	5/15/2014	190367	2,000	44,358	45,902
2012	CLE02	ESJ04	BIO	WN	3.7	Left	Green	Snout	3/15/2014	5/15/2014	190368	2,000	44,999	46,758
2012	CLE03	CFJ03	STF	HC	3.8	Right	Red	Posterior Dorsal	3/15/2014	5/15/2014	190369	4,000	42,147	45,670
2012	CLE04	CFJ04	BIO	HC	3.8	Left	Red	Posterior Dorsal	3/15/2014	5/15/2014	190370	4,000	41,497	45,010
2012	CLE05	ESJ05	STF	WN	3.8	Right	Green	Snout	3/15/2014	5/15/2014	190371	2,000	43,627	45,512
2012	CLE06	ESJ06	BIO	WN	3.8	Left	Green	Snout	3/15/2014	5/15/2014	190372	2,000	44,507	46,420
2012	CLE07	CFJ05	STF	WN	3.7	Right	Red	Snout	3/15/2014	5/15/2014	190373	2,000	41,067	42,932
2012	CLE08	CFJ06	BIO	WN	3.7	Left	Red	Snout	3/15/2014	5/15/2014	190374	2,000	37,499	39,367
2012	CLE09	CFJ01	STF	WN	3.7	Right	Red	Snout	3/15/2014	5/15/2014	190375	2,000	42,001	43,629
2012	CLE10	CFJ02	BIO	WN	3.7	Left	Red	Snout	3/15/2014	5/15/2014	190376	2,000	38,364	40,124
2012	CLE11	JCJ01	STF	WN	3.8	Right	Orange	Snout	3/15/2014	5/15/2014	190377	2,000	41,425	43,279
2012	CLE12	JCJ02	BIO	WN	3.8	Left	Orange	Snout	3/15/2014	5/15/2014	190378	2,000	44,713	46,491
2012	CLE13	ESJ01	STF	WN	3.7	Right	Green	Snout	3/15/2014	5/15/2014	190379	2,000	42,619	44,499
2012	CLE14	ESJ02	BIO	WN	3.7	Left	Green	Snout	3/15/2014	5/15/2014	190380	2,000	45,217	47,119
2012	CLE15	JCJ03	STF	WN	3.7	Right	Orange	Snout	3/15/2014	5/15/2014	190381	2,000	43,330	45,200
2012	CLE16	JCJ04	BIO	WN	3.7	Left	Orange	Snout	3/15/2014	5/15/2014	190382	2,000	42,900	44,729
2012	CLE17	JCJ05	STF	WN	3.7	Right	Orange	Snout	3/15/2014	5/15/2014	190383	2,000	43,240	45,034
2012	CLE18	JCJ06	BIO	WN	3.7	Left	Orange	Snout	3/15/2014	5/15/2014	190384	2,000	43,257	45,041

¹ BIO = BioVita (BioOregon Protein Inc.) or control diet; STF = salt-water transition diet at acclimation sites. All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year			Treatme! /Avg BK			Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2013	CLE01	CFJ05	WN	3.8	Right	Red	Snout	3/15/2015	5/6/2015	190401	2,000	36,097	37,928
2013	CLE02	CFJ06	WN	3.8	Left	Red	Snout	3/15/2015	5/6/2015	190402	2,000	34,541	36,343
2013	CLE03	ESJ05	WN	3.7	Right	Green	Snout	3/15/2015	5/6/2015	190403	2,000	33,761	35,473
2013	CLE04	ESJ06	WN	3.7	Left	Green	Snout	3/15/2015	5/6/2015	190404	2,000	34,682	· ·
2013	CLE05	CFJ03	WN	3.9	Right	Red	Snout	3/15/2015	5/6/2015	190405	2,000	34,495	36,240
2013	CLE06	CFJ04	WN	3.9	Left	Red	Snout	3/15/2015	5/6/2015	190406	2,000	32,054	33,823
2013	CLE07	ESJ03	WN	3.8	Right	Green	Snout	3/15/2015	5/6/2015	190407	2,000	32,866	34,672
2013	CLE08	ESJ04	WN	3.8	Left	Green	Snout	3/15/2015	5/6/2015	190408	2,000	34,418	36,130
2013	CLE09	CFJ01	HC	3.8	Right	Red	Posterior Dorsal	3/15/2015	5/6/2015	190409	4,000	32,264	36,029
2013	CLE10	CFJ02	HC	3.7	Left	Red	Posterior Dorsal	3/15/2015	5/6/2015	190410	4,000	31,648	35,570
2013	CLE11	JCJ03	WN	3.7	Right	Orange	Snout	3/15/2015	5/6/2015	190411	2,000	34,948	36,725
2013	CLE12	JCJ04	WN	3.7	Left	Orange	Snout	3/15/2015	5/6/2015	190412	2,000	35,508	37,236
2013	CLE13	ESJ01	WN	3.6	Right	Green	Snout	3/15/2015	5/6/2015	190413	2,000	34,013	35,805
2013	CLE14	ESJ02	WN	3.6	Left	Green	Snout	3/15/2015	5/6/2015	190414	2,000	34,580	36,370
2013	CLE15	JCJ01	WN	3.7	Right	Orange	Snout	3/15/2015	5/6/2015	190415	2,000	32,151	33,810
2013	CLE16	JCJ02	WN	3.7	Left	Orange	Snout	3/15/2015	5/6/2015	190416	2,000	33,703	35,249
2013	CLE17	JCJ05	WN	3.8	Right	Orange	Snout	3/15/2015	5/6/2015	190417	2,000	35,987	37,604
2013	CLE18	JCJ06	WN	3.8	Left	Orange	Snout	3/15/2015	5/6/2015	190418	2,000	33,807	35,453

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2014	CLE01	JCJ01	VIT	WN	1.7	Diabt	Orongo	Snout	3/15/2016	5/12/2016	190427	2,000	35,198	37,071
						Right	Orange					*	•	•
2014	CLE02	JCJ02	PRO	WN	1.7	Left	Orange	Snout	3/15/2016	5/12/2016	190428	2,000	33,966	•
2014	CLE03	ESJ05	VIT	WN	1.6	Right	Green	Snout	3/15/2016	5/12/2016	190429	2,000	33,202	35,121
2014	CLE04	ESJ06	PRO	WN	1.6	Left	Green	Snout	3/15/2016	5/12/2016	190430	2,000	32,271	34,191
2014	CLE05	CFJ01	VIT	WN	1.5	Right	Red	Snout	3/15/2016	5/12/2016	190431	2,000	34,849	36,728
2014	CLE06	CFJ02	PRO	WN	1.4	Left	Red	Snout	3/15/2016	5/12/2016	190432	2,000	33,272	35,097
2014	CLE07	JCJ05	VIT	WN	1.5	Right	Orange	Snout	3/15/2016	5/12/2016	190433	2,000	37,322	38,943
2014	CLE08	JCJ06	PRO	WN	1.5	Left	Orange	Snout	3/15/2016	5/12/2016	190434	2,000	36,493	38,274
2014	CLE09	CFJ03	VIT	WN	1.9	Right	Red	Snout	3/15/2016	5/12/2016	190435	2,000	36,883	38,786
2014	CLE10	CFJ04	PRO	WN	1.9	Left	Red	Snout	3/15/2016	5/12/2016	190436	2,000	34,619	36,507
2014	CLE11	JCJ03	VIT	WN	1.5	Right	Orange	Snout	3/15/2016	5/12/2016	190437	2,000	37,505	39,376
2014	CLE12	JCJ04	PRO	WN	1.5	Left	Orange	Snout	3/15/2016	5/12/2016	190438	2,000	35,212	37,016
2014	CLE13	ESJ01	VIT	WN	1.4	Right	Green	Snout	3/15/2016	5/12/2016	190439	2,000	37,387	39,279
2014	CLE14	ESJ02	PRO	WN	1.4	Left	Green	Snout	3/15/2016	5/12/2016	190440	2,000	38,002	39,894
2014	CLE15	ESJ03	VIT	WN	1.4	Right	Green	Snout	3/15/2016	5/12/2016	190441	2,000	37,749	39,146
2014	CLE16	ESJ04	PRO	WN	1.4	Left	Green	Snout	3/15/2016	5/12/2016	190442	2,000	36,736	38,626
2014	CLE17	CFJ05	VIT	HC	1.2	Right	Red	Posterior Dorsal	3/15/2016	5/12/2016	190443	4,000	40,014	43,232
2014	CLE18	CFJ06	PRO	HC	1.3	Left	Red	Posterior Dorsal	3/15/2016	5/12/2016	190444	4,000	38,272	42,090

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
1 cui	1 onu	1 onu	ITIVE				Tug In	jornation	Reteuse	Reteuse	Coue	111	CWI	Reteuse
2015	CLE01	ESJ01	PRO	WN	2.9	Right	Green	Snout	3/15/2017	5/15/2017	190457	2,000	32,798	34,620
2015	CLE02	ESJ02	VIT	WN	2.9	Left	Green	Snout	3/15/2017	5/15/2017	190458	2,000	32,700	34,552
2015	CLE03	JCJ03	PRO	WN	2.9	Right	Orange	Snout	3/15/2017	5/15/2017	190459	2,000	38,469	40,305
2015	CLE04	JCJ04	VIT	WN	2.9	Left	Orange	Snout	3/15/2017	5/15/2017	190460	2,000	34,615	36,415
2015	CLE05	CFJ05	PRO	WN	2.9	Right	Red	Snout	3/15/2017	5/15/2017	190461	2,000	33,149	35,007
2015	CLE06	CFJ06	VIT	WN	2.9	Left	Red	Snout	3/15/2017	5/15/2017	190462	2,000	32,516	34,357
2015	CLE07	CFJ01	PRO	HC	2.6	Right	Red	Posterior Dorsal	3/15/2017	5/15/2017	190463	4,000	28,055	31,894
2015	CLE08	CFJ02	VIT	HC	2.6	Left	Red	Posterior Dorsal	3/15/2017	5/15/2017	190464	4,000	24,464	28,317
2015	CLE09	JCJ01	PRO	WN	3.0	Right	Orange	Snout	3/15/2017	5/15/2017	190465	2,000	38,098	39,927
2015	CLE10	JCJ02	VIT	WN	3.0	Left	Orange	Snout	3/15/2017	5/15/2017	190466	2,000	35,807	37,611
2015	CLE11	ESJ03	PRO	WN	2.8	Right	Green	Snout	3/15/2017	5/15/2017	190467	2,000	33,136	34,968
2015	CLE12	ESJ04	VIT	WN	2.8	Left	Green	Snout	3/15/2017	5/15/2017	190468	2,000	34,248	36,014
2015	CLE13	ESJ05	PRO	WN	2.8	Right	Green	Snout	3/15/2017	5/15/2017	190469	2,000	37,837	39,669
2015	CLE14	ESJ06	VIT	WN	2.8	Left	Green	Snout	3/15/2017	5/15/2017	190470	2,000	36,564	38,402
2015	CLE15	JCJ05	PRO	WN	2.9	Right	Orange	Snout	3/15/2017	5/15/2017	190471	2,000	34,354	36,206
2015	CLE16	JCJ06	VIT	WN	2.9	Left	Orange	Snout	3/15/2017	5/15/2017	190472	2,000	36,156	38,019
2015	CLE17	CFJ03	PRO	WN	2.8	Right	Red	Snout	3/15/2017	5/15/2017	190473	2,000	36,915	38,720
2015	CLE18	CFJ04	VIT	WN	2.8	Left	Red	Snout	3/15/2017	5/15/2017	190474	2,000	38,105	39,944

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2016	CLE01	CFJ05	PRO	WN	2.4	Right	Red	Snout	3/15/2018	5/15/2018	190490	2,000	35,447	37,354
2016	CLE02	CFJ06	VIT	WN	2.4	Left	Red	Snout	3/15/2018	5/15/2018	190491	2,000	35,568	37,468
2016	CLE03	ESJ05	PRO	WN	2.4	Right	Green	Snout	3/15/2018	5/15/2018	190492	2,000	36,330	38,195
2016	CLE04	ESJ06	VIT	WN	2.4	Left	Green	Snout	3/15/2018	5/15/2018	190493	2,000	35,002	36,943
2016	CLE05	CFJ01	PRO	HC	2.7	Right	Red	Posterior Dorsal	3/15/2018	5/15/2018	190494	4,000	36,189	40,043
2016	CLE06	CFJ02	VIT	HC	2.7	Left	Red	Posterior Dorsal	3/15/2018	5/15/2018	190495	4,000	37,147	41,026
2016	CLE07	JCJ03	PRO	WN	2.4	Right	Orange	Snout	3/15/2018	5/15/2018	190496	2,000	36,599	38,400
2016	CLE08	JCJ04 ³	VIT	WN	2.4	Left	Orange	Snout	3/15/2018	5/15/2018	190497	2,000	34,080	54,569
2016	CLE09	JCJ01	PRO	WN	2.5	Right	Orange	Snout	3/15/2018	5/15/2018	190498	2,000	34,189	36,048
2016	CLE10	JCJ02 ³	VIT	WN	2.5	Left	Orange	Snout	3/15/2018	5/15/2018	190499	2,000	32,004	52,475
2016	CLE11	CFJ03	PRO	WN	2.6	Right	Red	Snout	3/15/2018	5/15/2018	190501	2,000	36,470	38,334
2016	CLE12	CFJ04	VIT	WN	2.6	Left	Red	Snout	3/15/2018	5/15/2018	190502	2,000	34,372	36,265
2016	CLE13	ESJ03	PRO	WN	2.5	Right	Green	Snout	3/15/2018	5/15/2018	190503	2,000	31,448	33,380
2016	CLE14	ESJ04	VIT	WN	2.5	Left	Green	Snout	3/15/2018	5/15/2018	190504	2,000	31,093	33,025
2016	CLE15	JCJ05	PRO	WN	2.5	Right	Orange	Snout	3/15/2018	5/15/2018	190505	2,000	36,688	38,550
2016	CLE16	JCJ06 ³	VIT	WN	2.5	Left	Orange	Snout	3/15/2018	5/15/2018	190506	2,000	35,244	0
2016	CLE17	ESJ01	PRO	WN	2.5	Right	Green	Snout	3/15/2018	5/15/2018	190507	2,000	37,553	39,512
2016	CLE18	ESJ02	VIT	WN	2.5	Left	Green	Snout	3/15/2018	5/15/2018	190508	2,000	35,689	37,621

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

³ Due to problems at the acclimation site, Jack Creek raceway 6 was closed and all fish transferred and split between raceways 2 and 4 in February 2018.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2017	CLE01	CFJ01	PRO	WN	3.4	Right	Red	Snout	3/15/2019	5/9/2019	190535	2,000	38,689	40,527
2017	CLE02	CFJ02	VIT	WN	3.4	Left	Red	Snout	3/15/2019	5/9/2019	190536	2,000	39,792	41,650
	CLE02	ESJ05	PRO	WN	3.5		Green		3/15/2019	5/9/2019	190537	•	34,646	•
2017						Right		Snout				2,000	,	•
2017	CLE04	ESJ06	VIT	WN	3.5	Left	Green	Snout	3/15/2019	5/9/2019	190538	2,000	35,655	37,493
2017	CLE05	JCJ05 ³	PRO	WN	3.1	Right	Orange	Snout			190539	2,000	35,118	
2017	CLE06	JCJ06 ³	VIT	WN	3.1	Left	Orange	Snout			190540	2,000	36,475	0
2017	CLE07	ESJ03	PRO	WN	3.3	Right	Green	Snout	3/15/2019	5/9/2019	190541	2,000	37,843	39,737
2017	CLE08	ESJ04	VIT	WN	3.3	Left	Green	Snout	3/15/2019	5/9/2019	190542	2,000	38,689	40,579
2017	CLE09	CFJ03	PRO	WN	3.4	Right	Red	Snout	3/15/2019	5/9/2019	190543	2,000	40,551	42,423
2017	CLE10	CFJ04	VIT	WN	3.4	Left	Red	Snout	3/15/2019	5/9/2019	190544	2,000	41,529	43,357
2017	CLE11	JCJ03 ³	PRO	WN	3.3	Right	Orange	Snout	3/15/2019	5/7/2019	190545	2,000	38,702	58,941
2017	CLE12	JCJ04 ³	VIT	WN	3.3	Left	Orange	Snout	3/15/2019	5/7/2019	190546	2,000	39,368	60,266
2017	CLE13	ESJ01	PRO	WN	3.3	Right	Green	Snout	3/15/2019	5/9/2019	190547	2,000	37,502	39,385
2017	CLE14	ESJ02	VIT	WN	3.3	Left	Green	Snout	3/15/2019	5/9/2019	190548	2,000	37,829	39,699
2017	CLE15	CFJ05	PRO	HC	3.2	Right	Red	Posterior Dorsal	3/15/2019	5/9/2019	190549	4,000	33,390	37,153
2017	CLE16	CFJ06	VIT	HC	3.2	Left	Red	Posterior Dorsal	3/15/2019	5/9/2019	190550	4,000	35,413	39,126
2017	CLE17	JCJ01 ³	PRO	WN	3.3	Right	Orange	Snout	3/15/2019	5/7/2019	190551	2,000	36,661	56,934
2017	CLE18	JCJ02 ³	VIT	WN	3.3	Left	Orange	Snout	3/15/2019	5/7/2019	190552	2,000	35,946	56,843

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

³ Due to problems at the acclimation site, Jack Creek raceways 5&6 were closed and all fish transferred and split between raceways 1-4 in February 2019.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2018	CLE01	ESJ01	Pro	WN	4.2	Left	Green	Snout	3/15/2020	5/15/2020	190573	2,773	31,833	34,524
2018	CLE02	ESJ02	Vit	WN	4.2	Right	Green	Snout	3/15/2020	5/15/2020	190574	2,000	31,213	33,105
2018	CLE03	CFJ01	Pro	HC	3.2	Left	Red	Posterior Dorsal	3/15/2020	5/15/2020	190575	2,000	35,285	37,228
2018	CLE04	CFJ02	Vit	HC	3.2	Right	Red	Posterior Dorsal	3/15/2020	5/15/2020	190576	2,000	34,672	36,594
2018	CLE05	ESJ03	Pro	WN	4.0	Left	Green	Snout	3/15/2020	5/15/2020	190577	2,000	33,397	35,301
2018	CLE06	ESJ04	Vit	WN	4.0	Right	Green	Snout	3/15/2020	5/15/2020	190578	2,000	33,772	35,692
2018	CLE07	CFJ05	Pro	HC	3.1	Left	Red	Posterior Dorsal	3/15/2020	5/15/2020	190579	2,000	32,461	34,384
2018	CLE08	CFJ06	Vit	HC	3.1	Right	Red	Posterior Dorsal	3/15/2020	5/15/2020	190580	2,000	34,276	36,203
2018	CLE09	JCJ03	Pro	WN	3.9	Left	Orange	Snout	3/15/2020	5/15/2020	190581	2,000	39,166	41,015
2018	CLE10	JCJ04	Vit	WN	3.9	Right	Orange	Snout	3/15/2020	5/15/2020	190582	2,000	38,910	40,780
2018	CLE11	JCJ05	Pro	WN	4.2	Left	Orange	Snout	3/15/2020	5/15/2020	190583	2,000	32,561	34,449
2018	CLE12	JCJ06	Vit	WN	4.2	Right	Orange	Snout	3/15/2020	5/15/2020	190584	2,000	32,726	34,621
2018	CLE13	JCJ01	Pro	WN	3.2	Left	Orange	Snout	3/15/2020	5/15/2020	190585	2,000	34,595	36,473
2018	CLE14	JCJ02	Vit	WN	3.2	Right	Orange	Snout	3/15/2020	5/15/2020	190586	2,000	32,739	34,630
2018	CLE15	CFJ04	Pro	WN	4.1	Left	Red	Snout	3/15/2020	5/15/2020	190587	4,000	30,681	34,579
2018	CLE16	CFJ03	Vit	WN	4.1	Right	Red	Snout	3/15/2020	5/15/2020	190588	4,000	30,934	34,845
2018	CLE17	ESJ05	Pro	WN	4.0	Left	Green	Snout	3/15/2020	5/15/2020	190589	2,000	32,347	34,266
2018	CLE18	ESJ06	Vit	WN	4.0	Right	Green	Snout	3/15/2020	5/15/2020	190590	2,000	31,802	33,731

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT		Est. Tot. Release ²
2019	CLE01	ESJ05	VIT	WN	3.8	Left	Green	Snout	3/15/2021	5/13/2021	190632	2,000	33,560	35,472
2019	CLE02	ESJ06	PRO	WN	3.8	Right	Green	Snout	3/15/2021	5/13/2021	190631	2,000	30,989	32,896
2019	CLE03	CFJ01	VIT	HC	3.6	Left	Red	Posterior Dorsal	3/15/2021	5/13/2021	190630	2,000	28,346	30,283
2019	CLE04	CFJ02	PRO	HC	3.6	Right	Red	Posterior Dorsal	3/15/2021	5/13/2021	190629	2,000	26,327	28,236
2019	CLE05	JCJ05	VIT	WN	3.4	Left	Orange	Snout	3/15/2021	5/13/2021	190628	2,000	30,806	32,703
2019	CLE06	JCJ06	PRO	WN	3.4	Right	Orange	Snout	3/15/2021	5/13/2021	190627	2,000	32,103	33,984
2019	CLE07	ESJ03	VIT	WN	3.6	Left	Green	Snout	3/15/2021	5/13/2021	190626	2,000	33,106	34,985
2019	CLE08	ESJ04	PRO	WN	3.6	Right	Green	Snout	3/15/2021	5/13/2021	190625	2,000	31,724	33,590
2019	CLE09	JCJ03	VIT	WN	3.7	Left	Orange	Snout	3/15/2021	5/13/2021	190624	2,000	33,462	35,333
2019	CLE10	JCJ04	PRO	WN	3.7	Right	Orange	Snout	3/15/2021	5/13/2021	190623	2,000	34,274	36,137
2019	CLE11	CFJ03	VIT	WN	3.9	Left	Red	Snout	3/15/2021	5/13/2021	190622	4,000	22,653	26,457
2019	CLE12	CFJ04	PRO	WN	3.9	Right	Red	Snout	3/15/2021	5/13/2021	190621	4,000	23,275	27,097
2019	CLE13	JCJ01	VIT	WN	3.5	Left	Orange	Snout	3/15/2021	5/13/2021	190620	2,000	33,085	34,904
2019	CLE14	JCJ02	PRO	WN	3.5	Right	Orange	Snout	3/15/2021	5/13/2021	190619	2,000	28,839	30,720
2019	CLE15	CFJ05	VIT	HC	3.9	Left	Red	Posterior Dorsal	3/15/2021	5/13/2021	190618	2,000	19,755	21,678
2019	CLE16	CFJ06	PRO	HC	3.9	Right	Red	Posterior Dorsal	3/15/2021	5/13/2021	190617	2,000	17,875	19,824
2019	CLE17	ESJ01	VIT	WN	3.7	Left	Green	Snout	3/15/2021	5/13/2021	190616	2,000	26,511	28,341
2019	CLE18	ESJ02	PRO	WN	3.7	Right	Green	Snout	3/15/2021	5/13/2021	190615	2,000	26,240	27,758

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood Year		Accl. Pond					Tag In	formation	First Release	Last Release	CWT Code	No. PIT	No. CWT	Est. Tot. Release ²
2020	CLE01	CFJ01	VIT	НС	4.0	Left	Red	Posterior Dorsal	3/15/2022	5/12/2022	190645	4,000	44,756	48,581
2020	CLE02	CFJ02	PRO	HC	4.0	Right	Red	Posterior Dorsal	3/15/2022	5/12/2022	190646	4,000	42,622	46,434
2020	CLE03	CFJ03	VIT	WN	4.1	Left	Red	Snout	3/15/2022	5/12/2022	190647	2,000	40,189	42,021
2020	CLE04	CFJ04	PRO	WN	4.1	Right	Red	Snout	3/15/2022	5/12/2022	190648	2,000	39,357	41,186
2020	CLE05	CFJ05	VIT	WN	4.0	Left	Red	Snout	3/15/2022	5/12/2022	190649	2,000	40,853	42,670
2020	CLE06	CFJ06	PRO	WN	4.0	Right	Red	Snout	3/15/2022	5/12/2022	190650	2,000	39,001	40,751
2020	CLE07	ESJ01	VIT	WN	4.1	Left	Green	Snout	3/15/2022	5/12/2022	190651	2,000	42,493	44,357
2020	CLE08	ESJ02	PRO	WN	4.1	Right	Green	Snout	3/15/2022	5/12/2022	190652	2,000	40,536	42,394
2020	CLE09	JCJ03	VIT	WN	4.1	Left	Orange	Snout	3/15/2022	5/12/2022	190653	2,000	41,247	43,055
2020	CLE10	JCJ04	PRO	WN	4.1	Right	Orange	Snout	3/15/2022	5/12/2022	190654	2,000	40,415	42,228
2020	CLE11	JCJ01	VIT	WN	4.1	Left	Orange	Snout	3/15/2022	5/12/2022	190655	2,000	40,961	42,830
2020	CLE12	JCJ02	PRO	WN	4.1	Right	Orange	Snout	3/15/2022	5/12/2022	190656	2,000	40,027	41,849
2020	CLE13	ESJ03	VIT	WN	4.1	Left	Green	Snout	3/15/2022	5/12/2022	190657	2,000	36,833	38,657
2020	CLE14	ESJ04	PRO	WN	4.1	Right	Green	Snout	3/15/2022	5/12/2022	190658	2,000	36,444	38,339
2020	CLE15	JCJ05	VIT	WN	4.1	Left	Orange	Snout	3/15/2022	5/12/2022	190659	2,000	40,500	42,310
2020	CLE16	JCJ06	PRO	WN	4.1	Right	Orange	Snout	3/15/2022	5/12/2022	190660	2,000	41,120	42,895
2020	CLE17	ESJ05	VIT	WN	4.2	Left	Green	Snout	3/15/2022	5/12/2022	190661	2,000	38,590	40,405
2020	CLE18	ESJ06	PRO	WN	4.2	Right	Green	Snout	3/15/2022	5/12/2022	190662	2,000	38,442	40,226

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Brood	<i>C.E.</i>	Accl.	Trea	Treatment ¹					First	Last	CWT	No.	No.	Est. Tot.
Year	Pond	Pond	/Avg	g BKI	D		Tag In	formation	Release	Release	Code	PIT	CWT	Release ²
2021	CLE01	JCJ03	VIT	WN	4.0	Left	Orange	Snout	2/6/2023	2/23/2023	190680	2,000	40,397	42,309
2021	CLE02	JCJ04	VIT	WN	4.0	Right	Orange	Snout	2/6/2023	2/24/2023	190681	2,000	41,964	43,800
2021	CLE03	ESJ05	VIT	WN	3.9	Left	Green	Snout	3/15/2023	5/15/2023	190682	2,000	45,305	47,165
2021	CLE04	ESJ06	VIT	WN	3.9	Right	Green	Snout	3/15/2023	5/15/2023	190683	2,000	43,730	45,609
2021	CLE05	JCJ01	VIT	WN	4.0	Left	Orange	Snout	2/6/2023	2/23/2023	190684	2,000	41,884	43,728
2021	CLE06	JCJ02	VIT	WN	4.0	Right	Orange	Snout	2/6/2023	2/23/2023	190685	2,000	41,625	43,509
2021	CLE07	ESJ03	VIT	WN	3.9	Left	Green	Snout	3/15/2023	5/15/2023	190686	2,000	45,127	46,983
2021	CLE08	ESJ04	VIT	WN	3.9	Right	Green	Snout	3/15/2023	5/15/2023	190687	2,000	45,627	47,537
2021	CLE09	CFJ01	VIT	WN	3.9	Left	Red	Snout	3/15/2023	5/15/2023	190688	2,000	43,041	44,944
2021	CLE10	CFJ02	VIT	WN	3.9	Right	Red	Snout	3/15/2023	5/15/2023	190689	2,000	43,877	45,728
2021	CLE11	ESJ01	VIT	WN	3.9	Left	Green	Snout	3/15/2023	5/15/2023	190690	2,000	42,767	44,646
2021	CLE12	ESJ02	VIT	WN	3.9	Right	Green	Snout	3/15/2023	5/15/2023	190691	2,000	43,152	45,029
2021	CLE13	JCJ05	VIT	WN	4.1	Left	Orange	Snout	2/6/2023	2/24/2023	190692	2,000	43,775	45,653
2021	CLE14	JCJ06	VIT	WN	4.1	Right	Orange	Snout	2/6/2023	2/24/2023	190693	2,000	43,078	44,978
2021	CLE15	CFJ03	VIT	WN	3.9	Left	Red	Snout	3/15/2023	5/15/2023	190694	2,000	44,467	46,327
2021	CLE16	CFJ04	VIT	WN	3.9	Right	Red	Snout	3/15/2023	5/15/2023	190695	2,000	45,768	47,633
2021	CLE17	CFJ05	VIT	HC	4.1	Left	Red	Posterior Dorsal	3/15/2023	5/15/2023	190696	4,000	38,624	42,489
2021	CLE18	CFJ06	VIT	HC	4.1	Right	Red	Posterior Dorsal	3/15/2023	5/15/2023	190697	4,000	37,090	40,943

¹ All fish are progeny of wild/natural parents unless denoted as HC which designates the hatchery control line beginning with brood year 2002. "Avg BKD" denotes the average BKD ELISA ranking of the female parents whose progeny were in these ponds. PRO=BioPro diet, VIT=BioVita diet, Bio-Oregon products.

² The number of fish released is estimated as the total number of fish counted at marking less mortalities documented from mark to release.

Appendix C

2022 Annual Chandler Certification for Outmigrating Spring (Yearling) Chinook Smolts

Prepared by:
Shubha Pandit, Bill Bosch & Mark Johnston
Yakima-Klickitat Fisheries Project
Yakama Nation Fisheries
P.O. Box 151, Toppenish,
WA 98948, USA

Sept 10, 2023

EXECUTIVE SUMMARY	<u>3</u>
1. INTRODUCTION	<u> 7</u>
2.0 METHODOLOGY	<u>9</u>
2.1. ESTIMATING SAMPLE RATE AND CALIBRATION10	
2.2. MISSING DATA IMPUTATION	
2.3. PIT-TAG DATA	
2.4. GENETIC INFORMATION13	
2.5. ESTIMATING PROSSER BYPASS DETECTION RATE	
2.6. WILD AND HATCHERY PASSAGE ESTIMATE	
2.7. MODEL VALIDATION (ESTIMATES COMPARISONS)	
2.8. ESTIMATED DAILY SMOLT OUTMIGRATION FROM PROSSER16	
3.0 RESULTS AND DISCUSSION	<u>18</u>
3.1. SPECIES COMPOSITION AND DAILY COUNTS IN THE COUNTING FACILITY19	
3.2. COUNTS OF WILD AND HATCHERY SPRING CHINOOK21	
3.2. DETECTION RATE OF THE SAMPLING FACILITY AND DOWNSTREAM DAMS (MCJ, JOHN DAY, BON) 23	
3.3. PREDICTED NUMBER OF OUTMIGRATING WILD AND HATCHERY SPRING CHINOOK SMOLTS26	
3.4. Annual trend of juvenile Prosser-passage estimates (hatchery and wild) by stock28	
3.5. GENETIC VARIATION AMONG STOCKS (UPPER YAKIMA, NACHES, AMERICAN)33	
3.6. CONTRIBUTION OF EACH STOCK TO OUTMIGRATION35	
3.7. RELATIONSHIP BETWEEN WILD JUVENILE PASSAGE ESTIMATES AND ESTIMATED ADULT RETURNS 37	
3.8. RELATIONSHIP BETWEEN ESTIMATED JUVENILE PASSAGE AND RIVER FLOW40	
3.8.1. Annual	40
3.8.2. Daily	40
4. REFERENCES	<u>43</u>
5. SUPPLEMENTARY INFORMATION: DETAILED PASSAGE-ESTIMATES	<u>44</u>

Executive Summary

Outmigrating smolts have been monitored since 1983 at the Chandler Diversion Canal in the Yakima River at Prosser, Washington. Chandler Juvenile Monitoring Facility (CJMF) improvements over the years have made it possible to count all species entering the juvenile bypass system each year from January into July, encompassing the entire juvenile outmigration period. Winter operations are made possible by the dual purpose of the canal, which supplies a hydroelectric plant as well as an irrigation district. The diversion is located downstream from all Spring Chinook, Summer Chinook, Coho and Steelhead spawning and juvenile rearing areas in the Yakima River Basin.

Numerous projects to restore and protect channel and riparian habitat, along with fish reintroduction programs, have been implemented in the Yakima Basin since the 1990s. The population status and trends for the different species in their freshwater life stages are important measures of management success, and the data collected at the facility have allowed us to answer several management questions that can help to improve these programs. This report provides estimates of 2022 outmigrating Spring (yearling) Chinook smolt populations (hatchery and wild) past Prosser Dam; its temporal (annual) trend from 1999 through 2022; and evaluation of whether the production and releases of hatchery smolts into the upper Yakima had an effect on the production of wild smolts and on the relative abundance of the three stock sources of wild smolts (Naches, American, and Upper Yakima rivers). This evaluation is part of an ongoing study that was initiated in 1999 with the first release of hatchery Spring Chinook smolts.

The entire bypass flow leaving the juvenile screens enters the counting facility but only a portion is manually counted. A timer gate on an hourly cycle directs bypass flow to a holding tank for a portion of each hour that can be adjusted as often as once per day to compensate for fluctuations in fish abundance so as to not overwhelm the capacity of the staff to tally those smolts by species and stock.

In 2022, the CJMF was in operation from January 13th to July 15th, a total of 183days, with one day closure due to excessively high stream flows or other technical problems. There were three timer gate settings (TR) for sampling, representing the percentage of time in each hourly cycle that bypassed fish were directed into the sample tank. Over the sampling period, the timer gate setting (TR) was 33% for 175 days, 50% for 6 days, and 100% for 2 days. Several statistical

methods/approaches were applied for expanding the subsample data and analyzing them. To address the objectives of the study, we answered the following research questions:

1. Which species and runs were captured during the 2022 sampling period and what were the relative abundances of each group?

During the 2022 sampling period, the sampling room captured a total of 70,541 individuals (raw, unadjusted value) representing 17 different species and runs. Among the salmonids, wild Summer/Fall Chinook accounted for the majority, with 36,745 individuals, making up over 52% of the total count. Hatchery Spring Chinook had the second highest count at 21,202 individuals, comprising approximately 30% of the total count. The third highest count was for coho, with 4,695 individuals. The total counts of salmonid species exhibited variation over time. The outmigration of both hatchery and wild Spring Chinook experienced its highest peak in April, with this migration period extending from early March to late June

- 2. What was the PIT-tag detection efficiency of the monitoring facility and did the efficiencies vary among the sampling periods (pre-March, March, April, May, Post-May)? In 2022, the overall detection rate at Prosser (pooled $30.01\% \pm 1.5\%$) was lower compared to $2021~(32.87\% \pm 1.06\%)$ and $2020~(43.96\% \pm 1.0\%)$, but higher than in $2019~(27.85\% \pm 0.7\%)$. It's important to note that the detection rate exhibited variation across the years. When examining the sampling periods, the peak detections were observed in April and May.
- 3. How many wild and hatchery Spring Chinook smolts were estimated to pass Prosser Dam during 2022 and was there any temporal trend from the 1999 through 2022 juvenile migration years?

Wild (natural-origin) spring chinook can be separated genetically into three stocks: Upper Yakima, from the Yakima River and tributaries above the Naches River confluence; American River, a tributary of the Naches River; and Naches River, from the Naches River and tributaries exclusive of the American River. Only the Upper Yakima stock receives hatchery supplementation.

The estimated number of wild Spring Chinook smolts passing Prosser Dam during the 2022 migration period ranged from 105,936 to 126,537, while the hatchery smolt estimates for 2022 ranged from 282,878 to 333,868. The estimated total number of hatchery Spring Chinook smolts passing Prosser Dam during the 2022 sampling period was almost three times higher that of wild Spring Chinook smolts. On average over outmigration years 2000-2022, 218,235± 24,275 wild

and 318,242± 15,387 hatchery Spring Chinook smolts passed Prosser Dam each year. The total number of wild outmigrating smolts as well as the upper Yakima component stock seemed to be decreasing over time, whereas the population of Upper Yakima hatchery smolts seemed to be increasing but none of these trends were statistically significant.

4. What proportions of wild Spring Chinook populations that outmigrated from Prosser were contributed by different stocks (Naches, American, Upper Yakima) in the Yakima Basin? Did the proportions of these stocks in the outmigrating smolt population vary by migration year?

About 61% of the total count of wild outmigrating Spring Chinook smolts was contributed by the Upper Yakima stock; while 28% and 11% of the total wild outmigration were contributed by the Naches and American river stocks, respectively. The rate of decline in the wild Upper Yakima stock averaged -1916/year, which was the highest of the three wild populations (Naches, American, Upper Yakima), but the estimated decline was not significant (Upper Yakima; $R^2 = 0.026$, p = 0.48). The rate of decrease for Naches stock was -1126/year, it was also not significant; however, only the American stock average reduction was significant (Slope= - 1110/year, $R^2 = 0.313$, p = 0.008).

5. Did the production and release of hatchery smolts into the upper Yakima affect the production of wild smolts?

To evaluate whether the hatchery program affected wild production, we tested a hypothesis that the rate of decline of outmigration should be higher in Upper Yakima wild Spring Chinook, because only the Upper Yakima stock receives hatchery supplementation. We found that there was no significant negative linear trend in the relative proportions of the three stocks of outmigrating smolt populations with the outmigration year, indicating that there was no influence of hatchery supplementation on the wild abundance as measured by outmigrating smolt abundance at Prosser in the lower Yakima River. If the proportion of wild Upper Yakima smolts would have decreased significantly over time, this could represent a hatchery effect, environmental effects, or a combination of the two.

6. What was the effect of river flow (daily as well as annual flow) on the number of outmigrating Spring Chinook smolts?

The yearly estimate of juvenile passage for both wild and hatchery Spring Chinook at Prosser Dam typically shows an upward trend in correlation with the average annual river flow during the outmigration period. However, this correlation was statistically significant only for Upper YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

Yakima hatchery smolts. Additionally, the findings indicate that daily estimates of outmigrating smolts experienced an increase when flow pulses occurred, whether they resulted from natural runoff or deliberate reservoir releases aimed at facilitating outmigration.

1. Introduction

Conservation and management of culturally and economically important species rely on monitoring programs to provide accurate and robust estimates of population size. Numerous projects to restore and protect channel and riparian habitat have been implemented on the Yakima River in coordination with reintroduction/supplementation programs. Quantifying and understanding whether juvenile outmigration or Smolt-to-Adult-Return (SAR) are increased/decreased over time, or which stocks perform better, are fundamental questions in determining whether species management and production goals are being reached.

Outmigrating smolts have been monitored since 1983 at the Chandler Diversion Canal in the Yakima River at Prosser, Washington (Figures 2 -4). The diversion canal is located downstream from all Spring Chinook, Summer Chinook, Coho and Steelhead spawning and juvenile rearing areas in the Yakima River Basin. Improvements at the Chandler Juvenile Monitoring Facility (CJMF) over the years have made it possible to count all species entering the juvenile bypass system each year from January into July, encompassing the entire juvenile (smolt) outmigration period. Winter operations are made possible by the dual purpose of the canal, which supplies a hydroelectric plant as well as an irrigation district. Chandler Diversion canal typically conveys 1000 cfs with a maximum of 1500 cfs over the course of a year. Water not used for irrigation is returned to the Yakima River eleven miles downstream at the Chandler Powerhouse. The Yakima River at Prosser is characterized by a high spring runoff peaking in March, and low summer flows reaching a minimum in August, but there is wide variation in this flow pattern and the timing of high and low flows from year to year.

At the CJMF, fish are counted from the portion of river flow that is diverted into the irrigation canal and then into the juvenile fish bypass system. The monitoring data collected at the facility over the 6-month outmigration period can be useful to determine the status and trends of different species and runs at the outmigrating smolt stage, identify potential life-cycle bottlenecks, and evaluate the effectiveness of ongoing reintroduction and habitat improvement actions on population dynamics. The number of smolts of different species that outmigrate from the river basin are influenced by the numbers and fecundity of spawners and by the conditions their progeny encounter before and during outmigration, including river water temperature and river flows. Yakima River flow is modified by storage and releases from five large reservoirs in

the upper Yakima Basin, and by irrigation and hydropower withdrawals and return flow. Under various agreements, minimum flows below storage and diversion dams are maintained to sustain ecological processes during periods of low natural runoff. Snowmelt exacerbated by occasional rain-on-snow events causes considerable variation in the flow of unregulated tributaries and in the Yakima River itself from November through June. When irrigation demand exceeds this runoff during the fish outmigration period, unnatural delays and poor outmigration survival can result. Studies of the relationship of river flow and outmigration have shown that river flow pulses from natural events and reservoir releases can accelerate smolt movement downstream and enhance survival to the ocean. Relying entirely on annual outmigration totals may obscure the role of in-season flow fluctuations and the importance of flow pulses during this critical period.

The main objectives of the study were to estimate prior-year (2022) outmigrating smolt populations (hatchery and wild) of spring Chinook; assess its temporal trend from 1999 through 2022; determine whether the production and releases of hatchery smolts into the upper Yakima had an effect on the production of wild smolts and on the relative abundances of the three stock sources of wild smolts (Naches, American, and Upper Yakima rivers); evaluate whether outmigration is higher in years of high river flow; and within years, on days with greater flow. To address the objectives, we answered the following research questions:

- Which species and runs were captured during the 2022 sampling period and what were the relative abundances of each group?
- What was the PIT-tag detection efficiency of the monitoring facility, and did the
 efficiencies vary among the sampling periods (pre-March, March, April, May, Post-May)
 in 2022?
- How many wild and hatchery Spring Chinook smolts emigrated from Prosser during 2022 and was there any temporal trend from 1999 through the 2022 juvenile migration year?
- What proportions of wild Spring Chinook populations that outmigrated from Prosser were contributed by different stocks (Naches, American, Upper Yakima) in the Yakima Basin? Did the proportions of these stocks in the outmigrating smolt population vary by migration year?

- Did the production and release of hatchery smolts into the upper Yakima affect the production of wild smolts?
- What was the effect of river flow (daily as well as annual flow) on the number of outmigrating Spring Chinook smolts?

2.0 Methodology

The CJMF is located on the fish bypass outlet of Chandler Canal at Prosser Dam (Figure 1), which is about 76 river km (47 river miles) upstream from the mouth of the Yakima River. The canal supplies water for irrigation and to generate power. The Chandler Canal typically conveys 1000 cfs with a maximum of 1500 cfs over the course of a year (Pyper and Smith, 2005). The proportion of river flow diverted, and thus the proportion of smolts entrained, varies widely during the outmigration season, due mostly to fluctuations in river flow. Juvenile fish screens (Figure 2) allow fish to exit the canal. The bypass flow enters a juvenile counting facility before returning to the river, where a portion of the fish are manually counted. A timer gate on an hourly cycle directs bypass flow to a holding tank for a portion of each hour that can be adjusted as often as once per day to compensate for fluctuations in fish abundance and avoid overwhelming the capacity of the staff to tally those smolts by species and stock. For this study, several methods were used to enumerate smolts and are outlined in Figure 3.

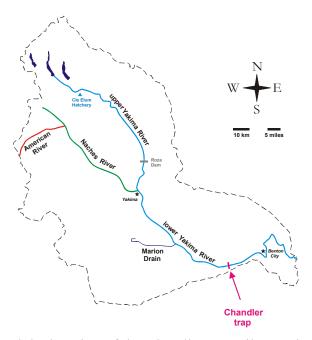


Figure 1. Yakima basin and the location of the Chandler Juvenile Monitoring Facility at Prosser and different sub-basins or genetic stocks (Naches, Upper Yakima River and American River). YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

Figure 2. Composite photo depicting the Chandler canal location and the key sampling components at the Chandler Juvenile Monitoring Facility (CJMF).

2.1. Estimating Sample Rate and Calibration

Figure 4 is a schematic of the CJMF layout and the details of the sampling area. The sampling period was continuous from January 13th to July 15th in 2022 except for one days in which the facility was shut down due to adverse river conditions. In 2020 and 2021, the sampling period was from January 15th to July 8th and 17th to July 9th, respectively.

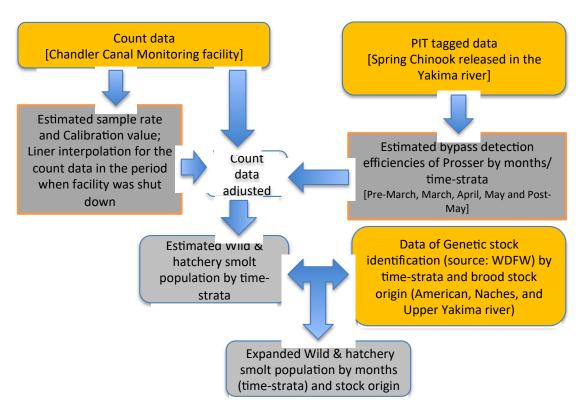


Figure 3. Outline of the methodology used for data analysis in this report

In 2022, three timer-gate settings (TR) were used to control the proportion of bypassed smolts that were manually counted: 33% (20 minutes per hour), 50% (30 minutes per hour), and 100%. There are two PIT-tag detectors in the bypass system (Figure 4): one upstream of the timer gate and one in the exit from the counting facility downstream of the timer gate where the daily subsamples of smolts are tallied. Along with detectors in the Prosser adult ladders, these detectors comprise site PRO in the PIT Tag Information System (PTAGIS) maintained by the Pacific States Marine Fisheries Commission.

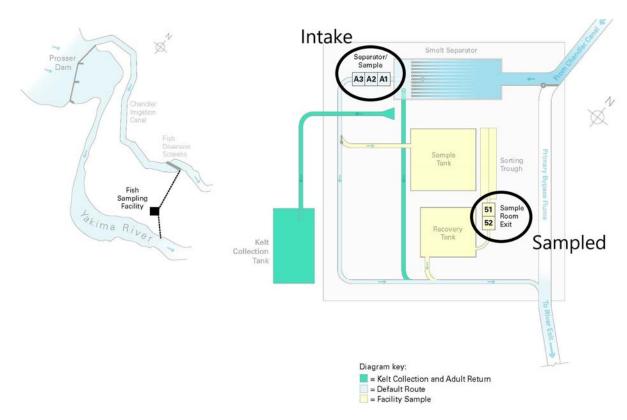


Figure 4. Site Overview of Chandler Juvenile Monitoring Facility at Prosser. The layout was adapted from the site configuration at https://www.ptagis.org/.

The timer gate, when opened, directs the Prosser bypass flow from Chandler Canal into the sample tank where smolts are tallied. Data regarding species, life stage, and abundance were tallied and counted daily during the sampling period. The timer gate setting has to be corrected because some bypassed fish swim against the bypass flow and may not enter the counting facility in strict proportion to the gate setting. For a given daily TR setting, the observed sample rate was computed as:

$$SR_{ti} : \frac{\text{the number of PIT-tagged Spring Chinook smolts detected leaving the counting facility}}{\text{the total number detected by the bypass detector located upstream of the timer gate } (\textit{TG}_i)}; \text{ or } \\$$

$$SR_{ti} = \frac{n[counting facility]}{n[bypass (TR)]}$$
; Where t_i is the timer setting.

Once we estimated the daily sample rate, the calibration value was computed as:

Calibration value (CV) =
$$w(33\%) \times [SR(TR=33\%)/33\%] + w(50\%) \times [SR(TR=50\%)/50\%]$$

Where w(33%) and w(50%) are the weight, which are the proportion of bypass detections within the TR setting 0.33 and 0.50, respectively. The weights being the proportions of bypass detections within the TR setting and estimated as (see, Neeley 2012):

$$w(33)\% = n[bypass(TR=33\%)]/\{n[bypass(TR=33\%)] + n[bypass(TR=50\%)]\}$$

$$w(50)\% = n[bypass(TR=50\%)]/\{n[bypass(TR=33\%)] + n[bypass(TR=50\%)]\}$$

2.2. Missing data imputation

Spring Chinook smolts were tallied each day as to source (hatchery-spawned or wild) on the basis of external marks. However, the sampling facility was shut down for a few days due to flow conditions or other technical problems. Data were missing for those days in which the sampling facility was closed. Linear interpolation was used to impute counts for days with missing information.

2.3. PIT-tag data

We queried the PTAGIS database (https://www.ptagis.org/) in July 2023 to retrieve available PIT-tag detection information for all tagged hatchery Spring Chinook smolts released upstream from Prosser Dam. About 6% of the total release hatchery Spring Chinook were tagged and released in the acclimation sites, but not all the tagged fish were detected at the acclimation site exits, either because of mortality and tag shedding over the 3-to-5-month period between tagging and volitional release, or detection failure on exit. We used only those fish which were detected on exit from acclimation sites or captured, tagged and released in the Roza Dam bypass in the upper Yakima River. A total of 45,139 PIT-tagged smolts were used for this analysis. An encounter history for each fish with detection events (date and detection site) was constructed for further analysis.

2.4. Genetic information

During the sampling period each year, tissue samples were taken from subsamples of wild smolts passing through the counting facility. In order to minimize bias, samples of smolts were distributed proportionally among five time strata (January-February, March, April, May and June). These tissue samples were processed in the Molecular Genetics Laboratory of the Washington Department of Fish and Wildlife (WDFW). Results of the molecular samples are YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

available (Seamons and Bowman, 2022) and this information was used to estimate 2022 outmigrating smolts.

2.5. Estimating Prosser bypass detection rate

The proportions of all PIT- tagged smolts released above Prosser and detected at mid-Columbia dams that were previously detected in the Chandler Canal bypass serve as estimates of bypass-detection rate. Detections at the three downstream sites with juvenile PIT tag detection (McNary, John Day, and Bonneville dams) were pooled to estimate the Prosser bypass detection rate. Daily estimates of Prosser detection rate from downstream dams are not possible because smolts migrate at different rates between Prosser and downstream dams, and one day's detections in the Prosser bypass are detected at a given downstream dam over several subsequent days. For this study, the detection rate was estimated for five strata over the outmigration period (pre-March, March, April, May and post-May) based on McNary Dam alone, or pooled over the three Columbia River dams. The detection efficiency (DE) was estimated as:

DE = n(daily joint site detections)/n(total site detections)

These detection rates based on upper Yakima hatchery Spring Chinook were also applied to the three stocks of wild Spring Chinook smolts, few of which were tagged. The wild Spring Chinook were made up of Naches, American, and Upper-Yakima stock (See fig. 1). All hatchery Spring Chinook smolts were coded-wire tagged and most were elastomer tagged in addition to about 6% being PIT-tagged. Elastomer tags allowed visual separation of hatchery smolts and adults by acclimation site, with fish released from the Clark Flat, Easton, and Jack Creek sites, receiving red, green, and orange elastomer tags, respectively. Elastomer-tagged smolts were also tallied by elastomer color. PIT-tagged hatchery smolts were not elastomer-tagged.

The wild and elastomer-tagged hatchery tallies were expanded by four different estimates of Prosser detection rates as mentioned above.

- 1. McNary-based un-stratified detection rate estimate
- 2. McNary-based stratified detection rate estimate
- 3. Pooled-lower-dam-based un-stratified detection rate estimate
- 4. Pooled-lower-dam-based stratified detection rate estimate

Detailed methodology is given in Neeley (2019). Of these four estimators, the one chosen for further analysis was a pooling of stratified estimates from the detection efficiencies from McNary, John Day, and Bonneville Dams on the Columbia Rivers; the strata being established for each of these dams by combining daily estimates that were deemed similar using Logistic stepwise regression of the daily detection efficiencies on Julian-date indicators that take the value 1 if the estimate was from a given date or a later date or 0 if the estimate was from an earlier date (see, Neeley (2019) for further details).

2.6. Wild and hatchery passage estimate

On a daily basis the sampled Spring Chinook smolts were tallied as to source (hatchery-spawned or wild). On those days when the facility was shut down, linear interpolation was used to impute values to the missing information as mentioned above. The daily actual and imputed tallies were divided by the sample rates in use on those days (SR). The sample-rate-adjusted tallies for each source were added over days within each of five time periods and were then divided by the respective period's detection rate. The wild and hatchery smolts were tallied separately. Wild smolts were identified by the lack of a coded-wire tag or external mark. Hatchery smolts could be identified by the presence of an elastomer tag, a coded wire tag, an adipose fin clip and a PIT tag if there was no elastomer tag. Expanded elastomer-tagged tallies were then divided by the proportion of hatchery smolts to obtain estimates of the passage of all hatchery smolts.

Within each of the five time periods (pre-March, March, April, May, post-May), the tallied sample of wild smolts was subsampled and genetically classified as to brood origin (American, Naches, or Upper Yakima rivers) by the Washington Department of Fish and Wildlife Molecular Genetics Laboratory so that brood-origin proportions could be estimated for each stratum. The wild passage estimates within each period were multiplied by each of the period's brood-source proportions. Each wild brood's time-period passage estimates were then added over the time periods to estimate the brood's total passage, as were the hatchery passage estimates. The detailed methodology can be found in Neeley (2019).

2.7. Model validation (estimates comparisons)

The estimates of the number of smolts passing Prosser Dam can vary slightly with different entrainment-based estimation methods. To ascertain which of these passage estimates is the best to report and use for further analysis, we compared flow/entrainment-based estimates of hatchery YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

Spring Chinook smolts at Prosser to another estimate that was derived using a PIT-tag-based survival rate from release site to Prosser Dam. Since we know the total number of hatchery Spring Chinook smolts released in the upper Yakima, we multiplied the <u>survival rate</u> by the <u>total release</u>, which provided the total hatchery smolt population passing Prosser. This estimate can be viewed as an independent estimate but it can also be biased because we assumed there was no variation in the survival rate among the sampling days' time strata. If detection rate is not homogeneous, survival rate cannot be homogeneous. However, this survival-based estimator has value because it is independent of the flow/entrainment-based method.

In addition to the survival-based method, each of the flow/entrainment methods' estimates of hatchery juvenile passage (see section 2.5 above) was also compared with hatchery adult returns at Prosser (Bosch, 2022). If the estimate is a reasonable value, it should be highly correlated with the hatchery adult returns from that outmigration.

2.8. Estimated Daily smolt outmigration from Prosser

One of our objectives was to determine whether river flows influence the size of the population of outmigrating smolts If larger number of smolts outmigrated during high river flow, the rate of outmigration would be a function of river flow. To estimate daily passage at Prosser Dam, daily counts of each species in the live box at the (CJMF) were expanded by the canal entrainment, canal survival (from prior paired releases), and sub-sampling rates using the following formula (Neeley, 2012).

```
Entrainment rate (ER) = 1/1 + \exp(-5.60081 + 13.5861 * \text{diversion rate}) ... eq. 1
```

```
Survival\ Probability = \\ 1/1 + \exp(-2.84815 + 0.0154 * Juliandate - 0.00017 * (canalflow + 132)..eq.2 \\ Estimated\ daily\ count:\ Count/(Survival\ Probability * sample.\ rate(SR) * ER) ..\ eq.3
```

The model for the Entrainment Rate (ER) was based on the logistic regression using the daily proportion of Yakima River flow diverted into the canal. The Entrainment Rate (ER) is the predicted daily proportion of fish passing Prosser that are entrained into Chandler Canal, the Canal-Survival Rate (Survival probability) is the daily predicted proportion of those entrained fish that survive the canal from below the head-gate down the canal and into the bypass to a

point just above the sampling station, and Sampling Rate (SR) is the estimated proportion of fish that are sampled from the bypass and enumerated.

- 2.8.1. Relationship between river flow and estimated daily count

 To determine whether high river flow helped to increase the rate of smolt outmigration from

 Prosser, we built univariate relationships using two datasets (annual and daily).
 - A. Annual total estimates: A univariate linear relationship between the estimated total annual number of hatchery Spring Chinook smolts passing Prosser (2000-2022 outmigration years) and the average March-June river flows (corresponding to the March-June volitional exit of hatchery Spring Chinook from acclimation sites) for each year from 2000 through 2022.
 - **B.** Daily estimates: A univariate linear relationship between the estimated daily count of wild Spring Chinook and daily river flow above Prosser Dam, which is the sum of the daily flows measured at the Bureau of Reclamation gaging stations CHCW (Chandler Canal) and YRPW (Yakima River below Chandler Canal). River flow data were accessed in May, 2023 from

https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html.

3.0 Results and discussion

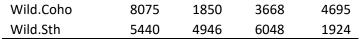
In 2022 the CJMF was operated from January 13th to July 15th (183 days total), with one day closure due to excessively high stream flows or other technical problems. There were three timer gate settings (TR) for sampling, representing the percentage of time in each hourly cycle that bypassed fish were directed into the sample tank. Over the sampling period, the timer gate setting (TR) was 33% for 175 days, 50% for 6 days, and 100% for 2 days. As noted earlier, adjustments are applied to timer gate settings because some bypassed fish swim against the bypass flow upstream from the gate and may not enter the counting facility in strict proportion to the gate setting, unless there is no alternative, i.e. the gate is set to sample 100% of bypass flow. This occurs at the end of the season when lethal lower river conditions require transportation of entrained smolts to the Columbia River instead of discharge past the sample room detector to the Yakima River.

The SR is usually less than the TR, indicating not all fish passing through the bypass when the timer gate is open are actually entering and being detected in the counting facility. In 2022, when TR was 33%, sample rate (SR) was 25.00%, and at the 50% TR setting the SR was 35.28% (Table 1).

Table 1. Sample-room sample rates for given timer-gate settings. Timer Gate Rate (TR) is the proportion of time that the bypass gate is opened to Sample Room.

Out-	Calibrat Estimated Sample Rates (SR) for different Timer-Gate Rate							te Rates						
Migrati	ion	Timer-Gate Rate (TR)												
on Year	Value	0.05	0.1	0.2	0.25	0.33	0.4	0.45	0.5	0.75				
1998	0.778	0.039	0.078	0.156	0.194	0.257	0.311	0.350	0.389	0.583				
1999	0.833	0.042	0.083	0.167	0.208	0.275	0.333	0.375	0.417	0.625				
2000	0.794	0.040	0.079	0.159	0.198	0.262	0.318	0.357	0.397	0.595				
2001	0.278	0.014	0.028	0.056	0.070	0.092	0.111	0.125	0.139	0.209				
2002	0.838	0.042	0.084	0.168	0.209	0.277	0.335	0.377	0.419	0.628				
2003	0.669	0.033	0.067	0.134	0.167	0.221	0.267	0.301	0.334	0.501				
2004	0.693	0.035	0.069	0.139	0.173	0.229	0.277	0.312	0.346	0.520				
2005	0.776	0.039	0.078	0.155	0.194	0.256	0.310	0.349	0.388	0.582				
2006	1.000	0.050	0.100	0.200	0.250	0.330	0.400	0.450	0.500	0.750				
2007	0.800	0.040	0.080	0.160	0.200	0.264	0.320	0.360	0.400	0.600				
2008	0.651	0.033	0.065	0.130	0.163	0.215	0.260	0.293	0.326	0.488				
2009	0.770	0.038	0.077	0.154	0.192	0.254	0.308	0.346	0.385	0.577				
2010	0.584	0.029	0.058	0.117	0.146	0.193	0.234	0.263	0.292	0.438				
2011	1.000	0.050	0.100	0.200	0.250	0.330	0.400	0.450	0.500	0.750				

2012	0.979	0.049	0.098	0.196	0.245	0.323	0.391	0.440	0.489	0.734
2013	0.973	0.049	0.097	0.195	0.243	0.321	0.389	0.438	0.486	0.729
2014	0.903	0.045	0.090	0.181	0.226	0.298	0.361	0.407	0.452	0.678
2015	0.830	0.041	0.083	0.166	0.207	0.274	0.332	0.373	0.415	0.622
2016	0.873	0.044	0.087	0.175	0.218	0.288	0.349	0.393	0.437	0.655
2017	0.819	0.041	0.082	0.164	0.205	0.270	0.327	0.368	0.409	0.614
2018	0.910	0.046	0.091	0.182	0.228	0.300	0.364	0.410	0.455	0.683
2019	0.906	0.045	0.091	0.181	0.226	0.299	0.362	0.408	0.453	0.679
2020	0.794	0.040	0.079	0.158	0.199	0.261	0.318	0.357	0.397	0.596
2021	0.806	0.035	0.071	0.141	0.176	0.233	0.282	0.317	0.353	0.529
2022	0.921	0.037	0.085	0.152	0.217	0.250	0.367	0.395	0.452	0.687


Note: Estimates for the year 1998-2018 were adopted from Neeley (2019)

3.1. Species composition and daily counts in the counting facility

During the 2022 sampling period, a total of 70,541 individuals (raw, unadjusted value) of 17 species and runs were captured in the sampling room (Table 2, Figure 5). Among salmonids, Wild Summer/Fall Chinook (36,745) comprised more than 52% of the total count. The second highest count was hatchery Spring Chinook (21,202) comprised about 30% of the total count; and the third highest count was wild coho (4,695).

Table 2. Total counts by species in the sample-room for 2019 and 2022.

Species	2019	2020	2021	2022
Bass	84	87	43	170
BigMthM	187	131	294	145
Bluegill	68	113	144	80
Carp	22	176	31	50
Catfish	809	757	174	2320
Chisel	2393	280	781	140
Crappie	19	47	115	29
Dace	3	0	0	0
Eel	3654	138	4539	2167
Hat.SpChk1	29532	39047	27746	21202
Perch	17	24	32	8
Pumpkinseed	1	0	0	0
Shiner	33	11	48	11
Sockeye	32	5593	151	18
Sucker	1079	590	525	505
Whitefish	357	215	124	332
Wild.Chk0	13411	26497	72108	27956
Wild.Chk1	13507	14925	14094	8789

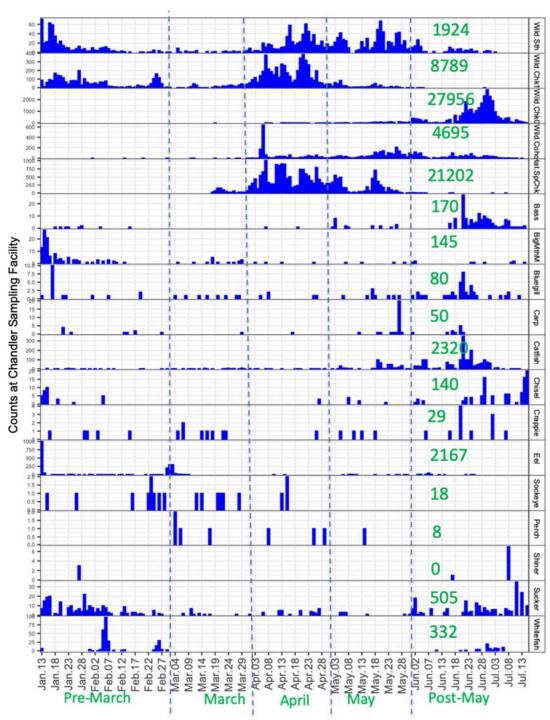


Figure 5: Daily catch (raw count) of different species from January through July 2022 (sampling period). Number in green color is the total counts in the sampled during the sampling period.

3.2. Counts of wild and hatchery Spring Chinook

Daily raw counts of the hatchery and wild Spring Chinook were divided by the daily sampling rate (adjusted with Timer Gate Rate) to derive the total number bypassed each sampling day. Missing counts were estimated by linear interpolation for those days in which no sampling was done as mentioned in methodology. After the adjustments, total counts of bypassed hatchery and wild spring Chinook during the sampling period in the sampling facility were estimated to be 91,052 and 37,378, respectively (Table 3).

Regarding the outmigration timing, wild Spring Chinook passed Prosser Dam earlier than their hatchery counterparts, starting with the January initiation of sampling, while hatchery Spring Chinook were not observed until after their volitional release from acclimation sites began in mid-March. The outmigration of both groups was nearly complete by the end of May and ending in late June but peaked in April (Table 3, Figure 6).

Table 3. Adjusted total count (raw count * sample rate (SR)) of bypassed hatchery and wild Spring Chinook smolts in the Chandler Juvenile Monitoring Facility over 5 temporal strata from 2019 through 2022.

Migration				Cou	unts		
year	Origin	Pre-March	March	April	May	Post-May	Total
	Wild	15489	3937	10596	23290	63	53,374
2019	Hatchery	0	904	24775	76824	198	102701
	Wild	8,843	2,602	30,737	10,851	58	53,092
2020	Hatchery	8	1,419	64,446	82,305	789	148,967
	Wild	12,482	3,849	34,195	11,816	1,365	63,706
2021	Hatchery	0	11,730	56,272	46,835	4,334	119,172
	Wild	11,352	1,821	21,730	2,444	208	37,378
2022	Hatchery	0	3,608	63,724	23,512	31	91,052

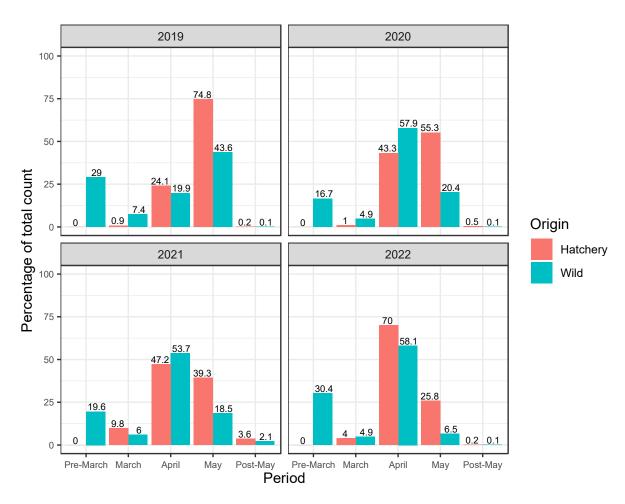


Figure 6. Percent of outmigration of bypassed wild and hatchery Spring Chinook by temporal stratum from 2019 through 2022.

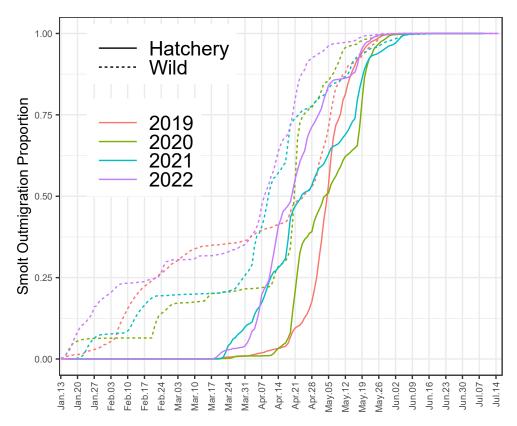


Figure 7. Daily cumulative catch proportion of bypassed wild and hatchery Spring Chinook for 2019, 2020 and 2022. Solid line and dotted line are represented by hatchery and wild (natural) origin, respectively.

3.2. Detection rate of the sampling facility and downstream Dams (MCJ, John Day, BON)

A total of 5,053 hatchery PIT-tagged hatchery Spring Chinook were detected at the Chandler Juvenile Monitoring Facility in 2022. The number of tagged fish detected at Prosser that were also detected at downstream dams (Joint detections) depended on downstream detection probability in addition to downstream mortality. Joint detections of hatchery Spring Chinook between Prosser (PRO) and McNary (MCJ), PRO and John Day (JDJ); and PRO and Bonneville Dam (B2J/BCC) in 2022 were found to be 137, 118, and 189, respectively (444 total). In 2020, joint detections were higher for all dams (Table 4) but it was lowest in 2022.

Overall detection rate at Prosser in 2022 (pooled 30.01 ± 1.5 %) was lower than in 2021 (32.87 ± 1.06 %) and 2020 (43.96 ± 1.0 %) but higher than 2019 (27.85 ± 0.7 %). The detection rate varied among the years (Table 4). The most obvious reason for fluctuations in detection rates is fluctuations in water diversion through the canal. The timing differences within the outmigration

period that were discussed earlier, and their interaction with irrigation demand and river flow could result in an effect on detection rate not evident from a simple mean of diversion rate over the entire outmigration period, or other factors could be responsible. The joint detection rate also varied by stratum or time window (before March, March, April, May and after May) for the tagged hatchery Spring Chinook. Because volitional exit began March second week, Prosser detections of hatchery smolts are not expected until late March. Therefore, there were no detections pre-March, and the most detections were in April and May (Table 5). The highest detection rate was in May; whereas the lowest was pre-March for smolts in all four years (2019, 2020, 2021 and 2022) regardless whether it was based on the MCJ reference or all downstream detection sites pooled together (MCJ, JDJ and B2J/BCC, Table 4). This may be related at least in part to normal within-season variations in river flow and diversion quantity.

Table 4. Detection efficiencies of Prosser (PRO) and joint detection of hatchery Spring Chinook smolts between PRO and McNary (MCJ), PRO and John Day (JDJ), PRO and Bonneville (B2J/BCC); and PRO and the pooled detections at MCJ and downstream sites. Detection at Bonneville included the juvenile (smolt) population of hatchery Spring Chinook detected by B2J at BCC antennas, which cover different passage routes. The pooled (ALL) estimate represents the detection probability at Prosser based on detection at one or more downstream dams (MCJ, JDJ and BON).

		Months						
Migration	Joint Detection of	Pre.	3.6	A		Post	Total	Rate of
year	PRO with	March	March	April	May	May	Joint	Detection
	McNary (MCN)	0	6	143	220	0	369	0.2709±0.012
2019	John Day (JD)	0	2	94	224	0	320	0.2946±0.014
2017	Bonneville (BON)	0	4	174	287	0	465	0.2704±0.018
	Pooled (All)	0	12	411	731	0	1154	0.2785±0.007
	McNary (MCN)	0	7	117	116	0	240	0.3344±0.018
2020	John Day (JD)	0	4	146	252	1	402	0.4620±0.018
2020	Bonneville (BON)	0	5	295	342	2	644	0.4666±0.014
	Pooled (All)	0	16	558	710	3	1286	0.4396±0.010
	McNary (MCN)	0	32	125	41	1	199	0.364±0.019
2021	John Day (JD)	0	1	38	18	3	60	0.245±0.026
2021	Bonneville (BON)	0	15	107	100	5	227	0.283±0.015
	Pooled (All)	0	48	270	159	9	486	0.3287±0.016
	McNary (MCN)	0	8	111	18	0	137	0.325±0.021
2022	John Day (JD)	0	22	50	46	0	118	0.264±0.025
2022	Bonneville (BON)	0	5	98	86	0	189	0.292±0.017
	Pooled (All)	0	35	259	150	0	444	0.301±0.015

Table 5. Detection rate of hatchery Spring Chinook smolts at Prosser Dam based on strata (Unstratified and Stratified) with the reference of McNary Dam and pooled over the three Columbia River dams (MCJ, JDJ and B2J/BCC) from 2019 through 2022. The redistributed detection rate was estimated by pooling the five time periods into two groups: pre-March through April, and May through Post-May.

Migration Year	Reference	stratified/unstratified	Pre- March	March	April	May	Post- May
	_	Un-stratified	27.61%	27.61%	27.61%	27.61%	27.61%
	Based on McNary Dam	Stratified	0.00%	19.38%	17.72%	39.63%	0.00%
2019	Mervary Dam	Stratified (Redistributed)	18.47%	18.47%	18.47%	39.63%	39.63%
2019	Based on	Un-stratified	27.93%	27.93%	27.93%	27.93%	27.93%
	pooled Dams (McN, JD and	Stratified	0.00%	24.64%	20.27%	36.13%	0.00%
	BON)	Stratified (Redistributed)	20.07%	20.07%	20.06%	35.88%	35.88%
	_	Un-stratified	33.44%	33.44%	33.44%	33.44%	33.44%
	Based on McNary Dam	Stratified	0.00%	11.85%	22.72%	57.96%	0.00%
2020	Meriary Bann	Stratified (Redistributed)	23.68%	23.68%	23.68%	57.96%	57.96%
2020	Based on pooled Dams (McN, JD and	Un-stratified	43.96%	43.96%	43.96%	43.96%	43.96%
		Stratified	0.00%	14.87%	33.21%	59.30%	0.00%
	BON)	Stratified (Redistributed)	32.26%	32.26%	33.30%	59.23%	59.23%
	_	Un-stratified	27.09%	27.09%	27.09%	27.09%	27.09%
	Based on McNary Dam	Stratified	0.00%	19.38%	17.72%	39.63%	0.00%
2021	Meriary Bann	Stratified (Redistributed)	18.47%	18.47%	18.47%	39.63%	39.63%
2021	Based on	Un-stratified	27.93%	27.93%	27.93%	27.93%	27.93%
	pooled Dams (McN, JD and	Stratified	0.00%	20.36%	20.06%	35.88%	0.00%
	BON)	Stratified (Redistributed)	20.07%	20.07%	20.06%	35.88%	35.88%
	_	Un-stratified	35.28%	35.28%	35.28%	35.28%	35.28%
	Based on McNary Dam	Stratified	0.000%	44.521%	29.326%	29.762%	0.000%
2022	Meriary Dam	Stratified (Redistributed)	36.834%	36.834%	36.834%	30.268%	30.268%
2022	Based on	Un-stratified	30.06%	30.06%	30.06%	30.06%	30.06%
	pooled Dams (McN, JD and	Stratified	0.00%	40.59%	28.20%	29.92%	0.00%
	BON)	Stratified (Redistributed)	29.54%	29.54%	28.20%	31.08%	31.08%

3.3. Predicted number of outmigrating wild and hatchery Spring Chinook smolts

The total number of hatchery Spring Chinook smolts passing Prosser Dam in all four migration years (2019-2022) was way higher than the wild (natural-origin) populations (Table 6). Applying the detection rates derived from hatchery Spring Chinook to their wild counterparts (Table 5), the estimates of wild Spring Chinook smolts passing Prosser Dam varied between years. In the case of the 2022 out-migration year, depending on the estimation method used, the estimates for wild outmigration ranged from 105,936 to 126,537, while the hatchery smolt estimates for 2022 ranged from 282,878 to 333,868 (see table 6). The details of the juvenile Spring Chinook passage YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

estimates at Prosser Dam based on different estimators from 1999-2022 are given in Appendix A of this report. The estimates based on the method with temporal strata Pre-May, May, June, Post-June was found to be slightly higher than the estimates based on non-stratified detection rates.

Table 6. The estimated number of wild and hatchery Spring Chinook smolts migrating past Prosser Dam in each year from 2019 through 2021 using four estimation methods.

		Estimates of outmigration population based on different methods									
Migration		McN_UnStr	McN_Str	Pooled_UnStr	Pooled_Str						
Year	Origin	(Method1)	(Method2)	(Method3)	(Method4)						
2019	Wild	168,119	154,848	175,427	154,530						
	Hatchery	310,836	353,803	319,579	343,212						
2020	Wild	201,313	168,124	151,254	115,300						
2020	Hatchery	456,852	500,195	371,069	380,494						
2021	Wild	180,396	180,554	218,874	211,829						
2021	Hatchery	353,239	365,831	437,370	429,200						
	Wild	102,936	105,936	126,537	120,247						
2022	Hatchery	282,878	279,511	333,868	317,270						

Choosing the best estimate was challenging. We compared these estimates with another independent estimate derived from the CJS model (Table 7). In migration year 2022, the average survival rate from the three acclimation sites to Prosser Dam was $38.19\pm1.19\%$ (based on the CJS model) and the total number of released hatchery Spring Chinook smolts during 2022 was 706,924. Multiplying the survival rate by the released population, the total outmigration of hatchery Spring Chinook from Prosser was estimated to be $269,975\pm8,412$ (mean \pm SE, see table 7). This estimate was almost similar with the estimates derived from the method using method 1 and 2 but lower than the method 3 and 4 (Tables 6 and 7).

Table 7. Number of Spring Chinook (hatchery) smolts release at Acclimation sites and its survival rate from the acclimation sites to Below Prosser based on CJS model and the estimated outmigration smolts from Prosser Dam for each migration year from 2019 through 2022.

Migration Year	No. of smolts at Acclimation	Survival rate the acclimation to below Pro	on site	Estima	ted outmigration smolt from Prosser
	sites	Average	SE Average		SE [95% CI]
2019	673,218	50.82	2.2	342,129	29,103 [285,087 - 399,171]
2020	624,200	61.22	3.91	382,135	47,958 [288137 - 476,133]
2021	550,398	41.92	2.21	230,727	24,764 [182,124 - 279,270]
2022	706,924	38.19	1.19	269,975	8,412 [261,562 - 278,387]

However, the estimates based on the CJS models may still have some bias because the survival rate may not be homogeneous among the sampling months, especially due to variation in river flow at Prosser within the sampling period.

3.4. Annual trend of juvenile Prosser-passage estimates (hatchery and wild) by stock

Annual juvenile Prosser-passage estimates from outmigration years 1999 through 2022 are given in Table 8 by stock of wild/Natural origin (Naches, American, and Upper Yakima rivers) plus hatchery Upper Yakima River origin. It showed that Prosser juvenile estimates for both wild (natural) and hatchery vary among the outmigration year.

Average annual Spring Chinook outmigration was $536,477 \pm 28,787$ (Mean \pm SE). Of the total, approximately 41% consisted of wild Spring Chinook smolts, while the remaining 59% were hatchery (Upper Yakima) Spring Chinook smolts that passed downstream at Prosser (see Table 8 and Figure 8). Wild (natural) Spring Chinook from the American River had the lowest average, Naches had the second, and the supplemented Upper Yakima stock had the highest average among the wild stocks (Figure 8).

Table 8. Annual estimated wild and hatchery-origin smolt passage at Prosser Dam from 1999 through 2022. Estimates for the outmigration years from 1998 through 2018 were adopted from Neeley (2019).

Brood	Otit		Wild Sto	ck Estimates		Hatchery	Total
Year (BY)	Outmigrat ion Year	Total Wild	Naches	American	Upper Yakima	(Upper Yakima)	Wild & Hatchery
1997	1999	584,016	93,427	63,000	427,588	187,669	771,685
1998	2000	199,416	55,737	50,944	92,795	303,688	503,104
1999	2000	148,460		samples not ta		281,256	429,716
2000	2001	467,359	92,323	17,835	357,201	366,950	834,309
2000	2002			*	*	*	ŕ
		308,959	74,498	42,867	191,594	154,329	463,288
2002	2004	169,397	59,978	35,800	73,619	290,950	460,347
2003	2005	134,859	45,321	35,564	5,374	236,443	371,302
2004	2006	133,238	49,947	7,882	75,409	300,508	433,746
2005	2007	99,341	26,684	11,103	61,554	351,359	450,700
2006	2008	120,013	32,589	6,811	80,613	265,485	385,498
2007	2009	237,228	80,756	26,498	128,974	415,923	653,151
2008	2010	220,950	77,397	30,354	113,198	382,878	603,828
2009	2011	304,322	58,904	17,882	227,536	442,564	746,886
2010	2012	258,106	81,483	23,609	153,014	391,446	649,552
2011	2013	365,386	85,577	25,681	254,228	372,079	737,465
2012	2014	263,266	79,450	28,622	155,194	408,222	671,488
2013	2015	125,150	29,885	13,769	81,496	332,715	457,865
2014	2016	185,442	57,657	15,378	112,407	403,938	589,380
2015	2017	208,929	62,190	24,455	122,285	273,248	482,177
2016	2018	131,489	37,500	9,824	76,150	290,644	422,133
2017	2019	175,427	41,690	22,379	127,176	319,579	495,006
2018	2020	151,265	34,770	5,007	115,288	371,069	522,333
2019	2021	106,092	24,279	7,610	80,859	212,000	318,092
2020	2022	126,537	58,802	8,263	59,472	282,878	409,416
Average	e/year	218,235	58,581	23,135	140,398	318,242	536,477
Standard	d Error (SE)	24,275	5,027	3,131	19,921	15,387	28,787

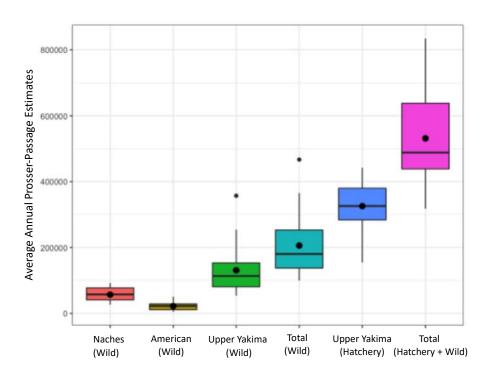


Figure 8. Average annual Prosser-passage estimates for wild and hatchery Spring Chinook by stock, outmigration years 2000-2022. The dot within each box is the mean and the horizontal line is the median. Outmigration year 1999 was not included for this box plot because in that year only a few raceways were used for hatchery production, and 1999 was also the last outmigration year in which "ISO" PIT tags with poor read range were used.

Because the smolt passage estimates for the three largest stock groupings (Total wild, Upper Yakima wild, and Upper Yakima hatchery) varied by outmigration year, we further estimated whether the outmigration smolt decreased over years (temporal trends) and whether there were differences among stocks. In 1999, only 14 of 18 raceways were used for hatchery production. As a result, the Prosser passage estimates for hatchery smolts in 1999 were low, which might not compare well with other years' hatchery estimates. Two relationships were developed using the data with and without 1999's passage estimates for all three groups (total wild, Upper Yakima wild, and Upper Yakima hatchery). In both datasets, the total number of out-migrating wild smolts and the number of wild upper Yakima smolts seemed to be decreasing over time, whereas the population of hatchery in Upper Yakima sub-basin seemed to be increasing; but neither trend was statistically significant (Figure 9).

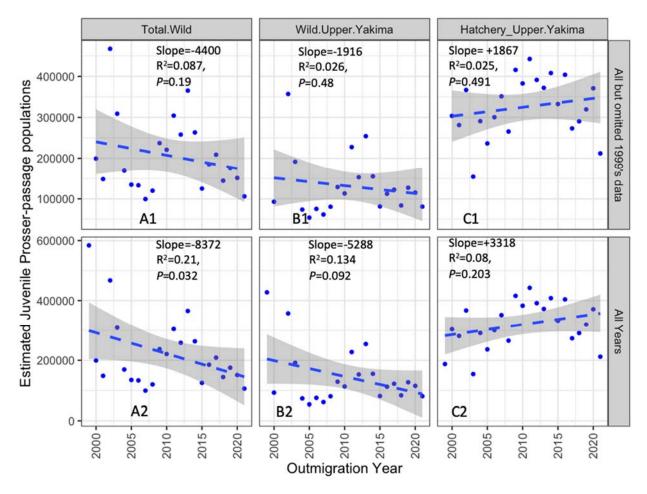


Figure 9. Estimated passage at Prosser Dam for total wild, Upper Yakima wild, and Upper Yakima hatchery Spring Chinook smolts with predicted trends by outmigration year. A1, B1 and C1 are for outmigration years 2000-2022 (omitting 1999 data); whereas the A2, B2 and C2 relationships were developed using all outmigration years from 1999 through 2021.

Although outmigration of hatchery smolts is increasing but not significantly, there is a possibility that a true positive increase in hatchery smolts coming from the Upper Yakima would have an associated true negative decrease in Upper Yakima wild passage. Therefore, the assessment of wild and hatchery trends was further examined using the percentage changes in outmigrating smolt populations of wild and hatchery over years (hatchery plus wild).

Table 9. Percentage of wild and hatchery spring Chinook stocks in juvenile Prosser passage estimates, comparing the hatchery stock to all wild stocks and to the Upper Yakima wild stock by itself.

		Total Yal	kima Basin	Only Upper Y	pper Yakima River		
Brood	Out-	%	<u> </u>	% Hatchery of	% Wild of		
Year	migration	Hatchery	% Wild of	Upper Yakima	Upper Yakima		
(BY)	Year	of Total	Total	Stock	stock		
1997	1999	24.32%	75.68%	30.50%	69.50%		
1998	2000	60.36%	39.64%	76.60%	23.40%		
1999	2001	65.45%	34.55%	Genetic samp	oles not taken		
2000	2002	43.98%	56.02%	50.67%	49.33%		
2001	2003	33.31%	66.69%	44.61%	55.39%		
2002	2004	63.20%	36.80%	79.81%	20.19%		
2003	2005	63.68%	36.32%	97.78%	2.22%		
2004	2006	69.28%	30.72%	79.94%	20.06%		
2005	2007	77.96%	22.04%	85.09%	14.91%		
2006	2008	68.87%	31.13%	76.71%	23.29%		
2007	2009	63.68%	36.32%	76.33%	23.67%		
2008	2010	63.41%	36.59%	77.18%	22.82%		
2009	2011	59.25%	40.75%	66.04%	33.96%		
2010	2012	60.26%	39.74%	71.90%	28.10%		
2011	2013	50.45%	49.55%	59.41%	40.59%		
2012	2014	60.79%	39.21%	72.45%	27.55%		
2013	2015	72.67%	27.33%	80.33%	19.67%		
2014	2016	68.54%	31.46%	78.23%	21.77%		
2015	2017	56.67%	43.33%	69.08%	30.92%		
2016	2018	68.85%	31.15%	79.24%	20.76%		
2017	2019	64.56%	35.44%	71.53%	28.47%		
2018	2020	71.04%	28.96%	76.30%	23.70%		
2019	2021	66.65%	33.35%	72.39%	27.61%		
2020	2022	69.09%	30.91%	82.63%	17.37%		

Note: Estimates for the outmigration years from 1998 through 2018 were adopted from Neeley (2019)

We found that while the rate of change in out-migrating hatchery smolt population over years seemed to be positive (Figure 10) and the trend for wild stocks were negative, the relationship of hatchery passage to wild passage (all wild stocks or only the Upper Yakima wild stock) was not statistically significant. This indicates that the production and releases of spring Chinook hatchery smolts into the upper Yakima do not have an effect on the production of wild smolts. The reduction of the production of wild smolts could be influenced by many factors including YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

habitat loss that limits the carrying capacity and it eventually reduces the survival rate and the total outmigration.

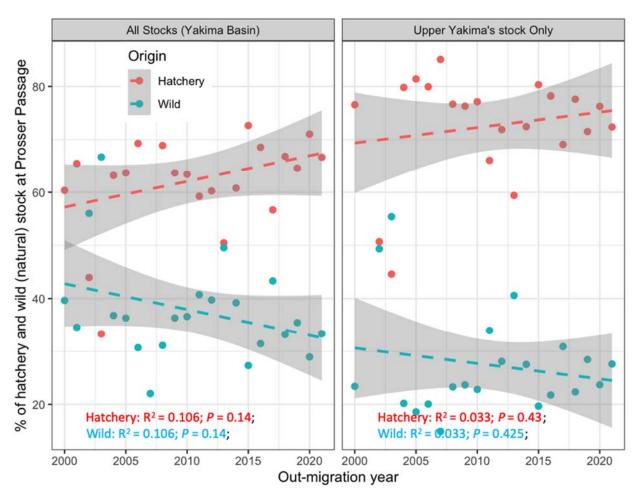


Figure 10. Linear trend on the percentage of hatchery and wild components of the total out-migrating spring Chinook populations for all Yakima Basin stocks and only the Upper Yakima River stock

3.5. Genetic variation among stocks (Upper Yakima, Naches, American)

As discussed above, wild Yakima Basin Spring Chinook are comprised of multiple stocks, of which Upper Yakima River, Naches River, and American River stocks have been identified by demographic characteristics and supported by genetic analysis. Reproductively isolated populations usually differ in productivity. We, therefore, further evaluated whether the rate of outmigration of these genetic stocks has changed over time. Because no hatchery program has been implemented in the American and Naches rivers, we hypothesized that the rate of decline

should be higher in the Upper Yakima's wild Spring Chinook, if the hatchery program affected wild productivity.

The annual outmigration estimates showed that the wild Spring Chinook smolt population declined over the 2000-2022 outmigration years (Figure 9) for all three stocks. The rate of decline of the smolt in the Wild Upper Yakima stock was -1916 smolts/year (see figure 9 and 11), but the trend was not significant ($R^2 = 0.026$, p = 0.48), nor was the rate of decline for the Naches River stock (Slope=1126/year, R^2 =0.114, p = 0.135, Figure 11). Only the American stock declined significantly (Slope= -1110/year, R^2 = 0.313, p=0.008, Figure 11); there has been no introduction of hatchery smolts into the American River.

In fact, the American River seems to have suffered a relatively low anthropogenic effect compared to the other rivers. It is also the coldest and has entirely natural flow that persists through the summer. If hatchery or other local anthropogenic factors had a negative influence, the American River stock should have declined the least, but the opposite was true in terms of outmigrant abundance.

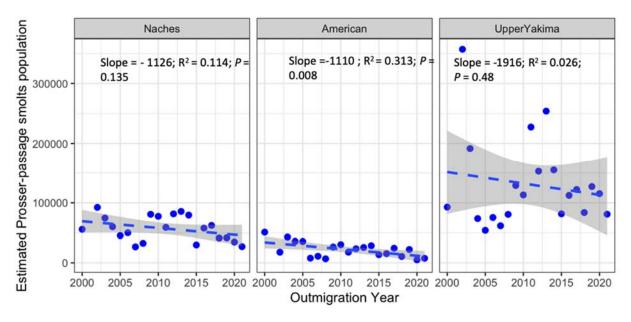


Figure 11. The relationship between estimated smolt passage of Wild Spring Chinook of Naches, American, and Upper Yakima stock by outmigration year.

3.6. Contribution of each stock to outmigration

For outmigration years 1999-2022, about 62% of the total wild outmigration was contributed by the Upper Yakima wild stock; while 27% and 11% were contributed by Naches and American River stocks, respectively (Table 10).

Table 10. American, Naches and Upper Yakima Percentages of Prosser passage of wild Spring Chinook smolts at Prosser Dam. Data for outmigration years 1998 through 2017 were adopted from Neeley (2018).

	Outmigration			
Brood Year	Year	Naches	American	Upper Yakima
1997	1999	16.00%	10.79%	73.22%
1998	2000	27.95%	25.55%	46.53%
1999	2001			
2000	2002	19.75%	3.82%	76.43%
2001	2003	24.11%	13.87%	62.01%
2002	2004	35.41%	21.13%	43.46%
2003	2005	33.61%	26.37%	40.02%
2004	2006	37.49%	5.92%	56.60%
2005	2007	26.86%	11.18%	61.96%
2006	2008	27.15%	5.68%	67.17%
2007	2009	34.04%	11.17%	54.37%
2008	2010	35.03%	13.74%	51.23%
2009	2011	19.36%	5.88%	74.77%
2010	2012	31.57%	9.15%	59.28%
2011	2013	23.42%	7.03%	69.58%
2012	2014	30.18%	10.87%	58.95%
2013	2015	23.88%	11.00%	65.12%
2014	2016	31.09%	8.29%	60.62%
2015	2017	29.77%	11.70%	58.53%
2016	2018	28.52%	7.47%	57.91%
2017	2018	23.76%	12.76%	72.50%
2018	2020	22.99%	3.31%	76.22%
2019	2021	22.89%	7.17%	69.94%
2020	2022	26.47%	6.53%	67.00%
Mean		27.45%	11.19%	61.36%
SE		1.16%	1.20%	2.15%

Table 11. Estimated Wild Spring Chinook stock distributions (American, Naches and Upper Yakima River) within the genetic sampling periods (Pre-March through Post-May). The data were provided by WDFW.

:			American					Naches					U. Yakima	ı	
migrat ion year	Pre- March	March	April	May	Post- May	Pre- March	March	April	May	Post- May	Pre- March	March	April	May	Post-May
1999	8.08%	8.08%	8.08%	12.00%	28.00%	6.06%	6.06%	6.06%	29.00%	33.00%	85.86%	85.86%	85.86%	59.00%	39.00%
2000	16.18%	16.18%	22.14%	46.94%	46.94%	22.06%	22.06%	30.99%	36.73%	36.73%	61.76%	61.76%	46.88%	16.33%	16.33%
2002	3.81%	3.81%	3.81%	3.86%	3.86%	19.68%	19.68%	19.68%	20.29%	20.29%	76.51%	76.51%	76.51%	75.85%	75.85%
2003	13.43%	13.43%	13.43%	16.03%	16.03%	21.64%	21.64%	21.64%	34.24%	34.24%	64.93%	64.93%	64.93%	49.73%	49.73%
2004	6.46%	4.27%	21.50%	34.72%	31.25%	33.84%	29.27%	36.47%	34.03%	18.75%	59.70%	66.46%	42.03%	31.25%	50.00%
2005	21.39%	18.87%	29.57%	32.14%	0.00%	35.32%	7.55%	35.36%	23.21%	17.86%	43.28%	73.58%	35.07%	44.64%	82.14%
2006	7.36%	0.00%	5.52%	5.45%	2.27%	39.88%	25.96%	35.95%	39.11%	15.91%	52.76%	74.04%	58.53%	55.45%	81.82%
2007	9.10%	14.50%	6.81%	16.75%	11.54%	18.20%	32.30%	24.72%	29.78%	26.07%	72.70%	53.20%	68.47%	53.47%	62.39%
2008	8.33%	0.00%	5.22%	5.00%	14.81%	8.33%	14.29%	25.22%	31.11%	51.85%	83.33%	85.71%	69.57%	63.89%	33.33%
2009	9.80%	10.93%	12.06%	10.95%	36.29%	35.60%	32.43%	29.25%	40.78%	28.23%	54.60%	56.64%	58.69%	48.27%	35.48%
2010	30.31%	0.00%	14.16%	11.88%	0.00%	7.35%	19.50%	37.13%	33.63%	75.49%	62.34%	80.50%	48.71%	54.49%	24.51%
2011	8.64%	0.00%	3.49%	5.92%	16.65%	18.19%	19.75%	23.96%	13.10%	0.00%	73.17%	80.25%	72.55%	80.98%	83.35%
2012	10.99%	5.31%	6.17%	13.65%	23.46%	31.62%	29.60%	29.32%	38.48%	29.45%	57.39%	65.09%	64.51%	47.87%	47.09%
2013	8.23%	2.30%	5.72%	16.96%	6.39%	17.43%	20.59%	27.50%	29.53%	7.85%	74.34%	77.11%	66.78%	53.51%	85.76%
2014	11.65%	12.03%	9.09%	11.95%	13.86%	41.19%	21.74%	30.16%	38.12%	0.00%	47.16%	66.23%	60.74%	49.93%	86.14%
2015	13.86%	11.62%	8.92%	14.74%	14.74%	16.80%	26.32%	23.13%	24.09%	24.09%	69.34%	62.06%	67.96%	61.17%	61.17%
2016	5.69%	7.42%	9.44%	13.00%	3.71%	26.41%	23.18%	38.42%	34.52%	0.00%	67.90%	69.40%	52.13%	52.49%	96.29%
2017	10.20%	11.21%	15.80%	10.78%	37.16%	31.70%	27.73%	27.10%	29.57%	11.47%	58.10%	61.06%	57.10%	59.65%	51.37%
2018	8.80%	3.30%	5.82%	10.40%	25.00%	23.20%	33.00%	35.11%	41.94%	25.00%	68.00%	63.70%	59.08%	47.66%	50.00%
2019	9.90%	12.44%	14.70%	14.71%	0.00%	17.82%	21.89%	23.32%	35.29%	0.00%	72.28%	65.67%	61.98%	50.00%	100.0%
2020	3.78%	6.50%	2.84%	3.60%	0.00%	3.78%	6.50%	2.84%	3.60%	0.00%	76.22%	73.17%	74.47%	66.19%	100.0%
2021	5.87%	3.72%	6.62%	11.11%	11.11%	31.05%	12.56%	23.69%	31.82%	7.41%	63.08%	83.72%	69.69%	57.07%	81.48%
2022	7.93%	7.02%	5.88%	5.13%	0.00%	47.39%	46.78%	45.63%	50.00%	0.00%	44.68%	46.20%	48.48%	44.87%	100.00%

3.7. Relationship between Wild Juvenile passage estimates and estimated Adult Returns

Since the number of smolts outmigrating from Prosser (Prosser-passage estimates) varied among years, we further evaluated whether this variation corresponded to adult returns. Or in other words, does the fluctuation of annual wild juvenile passage at Prosser synchronize with the fluctuation of the adult returns at Prosser? To answer the question, we built a univariate relationship between the total Juvenile Prosser estimates of wild Spring Chinook and the predicted adult return to Prosser. Table 12 presents the brood year Prosser escapement (the escapement measures are taken as a surrogate of spawner number) of the parental generation in addition to total juvenile Prosser passage and Prosser return. The relationship between juvenile-to-adult correlation of total wild juvenile passage to adult return from each outmigration was significantly high, with an R² of 69% and p value<0.01 (Figure 12), indicating that estimated number of outmigration smolts are reasonably accurate.

Table 12. Total estimated escapement (Estimated Spawners (wild/natural) at Yakima river mouth), juvenile passage and return to Prosser of each wild Spring Chinook brood for brood years 1997-2019. Estimated value for the Prosser escapement and Prosser return were adopted from Table 10 and Table 3 of Bosch (2022), respectively. The shaded yellow color indicates that adult returns from these brood years are incomplete.

Brood Year	Out- migration Year	Estimated Spawners (wild/natural) at Yakima river mouth	Total Juvenile Prosser Passage	Prosser return
1997	1999	2,337	584,016	12,808
1998	2000	1,307	199,476	7,283
1999	2001	1,439	148,460	4,090
2000	2002	15,976	467,359	11,128
2001	2003	17,916	308,959	7,731
2002	2004	11,113	169,397	3,850
2003	2005	5,933	134,859	2,195
2004	2006	12,893	133,218	3,687
2005	2007	7,617	99,265	4,089
2006	2008	5,050	123,735	5,118
2007	2009	3,308	250,846	7,610
2008	2010	5,922	221,228	6,739
2009	2011	8,172	303,711	4,167
2010	2012	9,875	252,029	6,148
2011	2013	11,644	365,468	7,002
2012	2014	7,383	267,433	3,941
2013	2015	6,352	123,289	3,736
2014	2016	7,882	53,478	1,928
2015	2017	7,569	193,723	870
2016	2018	5,613	144,493	1,876
2017	2019	5,015	175,427	1,745
2018	2020	2,451	151,254	3,474
2019	2021	1,628	106,092	
2020	2022	2,723	126,537	

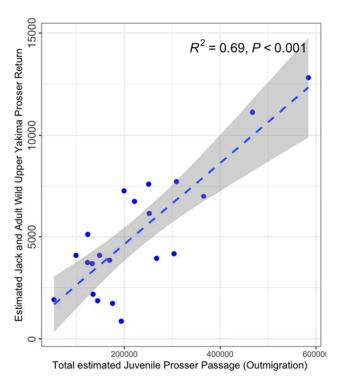


Figure 12. The relationship between total smolts outmigration and Prosser returns of progeny (adult returns) of wild Spring Chinook. Since the Spring Chinook can spend as many as 4 years in the ocean, the relationship was made for the populations that brood year from 1997 through 2019.

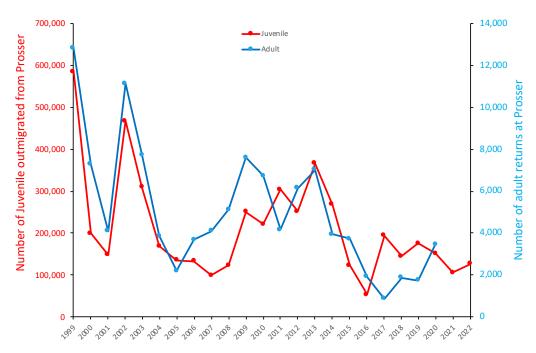


Figure 13. Year-to-year trends in juvenile outmigration from Prosser for outmigration years 1999-2022 and Adult returns of Spring Chinook (wild) for outmigration years 1999-2020.

3.8. Relationship between estimated juvenile passage and river flow

3.8.1. Annual

The annual juvenile passage estimate of wild and hatchery Spring Chinook at Prosser Dam tends to increase with average river flow for the outmigration period, but this relationship was significant only for Upper Yakima hatchery smolts (Figure 14).

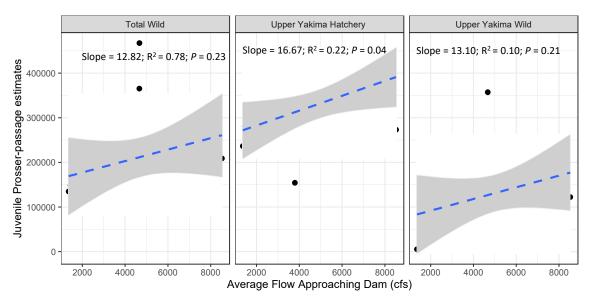


Figure 14. The relationship between the annual passage estimate for Total Wild, Upper Yakima Wild and Upper Yakima hatchery stocks of juvenile Yakima Spring Chinook and the March-June average river flow approaching Prosser Dam. The flow is the sum of the average flow measured at the gaging stations CHCW and YRPW.

3.8.2. Daily

The annual juvenile passage estimate of wild and hatchery Spring Chinook at Prosser Dam tends to increase with average river flow for the outmigration period, but this relationship was significant only for Upper Yakima hatchery smolts (Figure 14).

We further evaluated whether the <u>daily</u> estimated number of wild out-migrating smolts in 2022 was affected by daily river flow (the river flow approaching the Prosser Dam, which is the sum of the flow measured at the gaging stations CHCW and YRPW). Figure 15 shows day-to-day trends of the estimated daily counts and the daily river flow and water temperature, and shows that daily estimated outmigrating smolts increased when flow pulses occurred, whether due to natural runoff or reservoir releases made to facilitate outmigration.

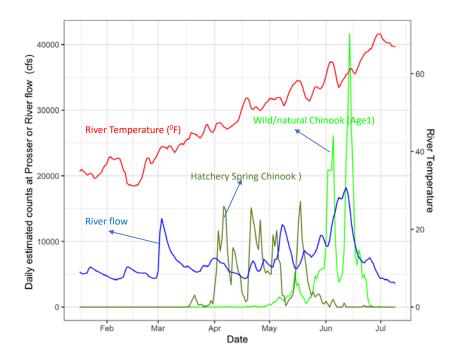


Figure 15. Daily estimated counts of hatchery and wild/natural Spring Chinook smolts, water temperature and river flow approaching Prosser Dam for the period in which the CJMF was operated during 2022. The river flow (blue line) is the flow approaching the dam (sum of the flow measured at the gaging stations CHCW and YRPW). Red line is the daily average temperature measured at Prosser.

We analyzed scatter plots and linear relationships between the daily estimated smolt counts of both runs (natural origin and hatchery origin) and daily river flow; and it showed that in general, daily estimated out-migrating smolts was high if the river flow was high (see Figure 16). Furthermore, the smolts were found to be out-migrated more when flow pulse events occurred whether due to natural runoff or reservoir releases made to facilitate outmigration, indicating that when smolt migration appears to be stalled, releases of pulses in flow from reservoirs can improve the rate of smolt out-migration (Figure 15).

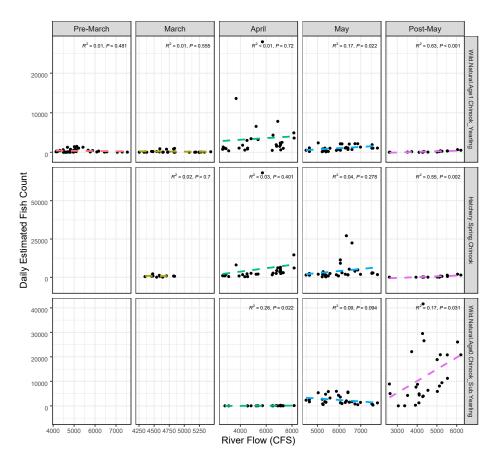


Figure 16. The relationship between daily estimated wild/natural and hatchery Spring Chinook smolt passage and river flow approaching Prosser Dam for the period in which the Chandler Canal monitoring facility was operated during 2022.

4. References

- Bosch, B. 2022. Run Size Forecast for Yakima River Adult Spring Chinook, 2023 (preliminary). Yakima Klickitat Fisheries Project, Yakama Nation Fisheries Resource Management, 760 Pence Road, Yakima, Washington, 98908
- Fiander, W., D. E. Fast, and W. J. Bosch (editors). 2019. Yakima-Klickitat Fisheries Project Monitoring and Evaluation- Yakima Subbasin, Final Report for the performance period May/2018-April/2019. Project Number 1995-063-25, 275 electronic pages.
- Neeley, D. 2019. Methods of Estimating Smolt Survival and Passage. Appendix C₇ *In* Final report for the performance period May 1, 2018 through April 30, 2019, edited by W. Fiander, D. E. Fast, and W. J. Bosch. Yakima/Klickitat Fisheries Project.
- Neeley, D. 2012. 2012 Annual Report: Chandler Certification for Yearling Outmigrating Spring Chinook Smolt.
- Pyper, B. J. and Smith, D. L. 2005. Evaluation Of Salmonid Survival Resulting From Flow Alterations To The Lower Yakima River, S.P. Cramer and Associates, submitted to Kennewick Irrigation District and US Bureau of Reclamation, Yakima
- Seamons, T. R. and Bowman, C. M. 2022. DNA-Based Population-of-Origin Assignments of Chinook Smolts Outmigrating Past Chandler Trap at Prosser Dam (Yakima River) in 2022. Washington Department of Fish and Wildlife, Molecular Genetics Laboratory, 600 Capital Way N., Olympia, WA.
- Zabel, R. W. & Achord, S. (2004) Relating size of juveniles to survival within and among populations of Chinook salmon. Ecology, 85, 795–806.
- Zabel, R. W., T. Wagner, J. L. Congleton, S. G. Smith, and J. G. Williams. 2005. Survival and selection of migrating salmon from capture-recapture models with individual traits. Ecological Applications 15:1427–1439.

5.	Sur	าก	lement	arv ir	ıforma	tion:	Detailed	Passage	-Estimates

Detailed Passage-Estimates for each year from 1998 through 2022

1998		Brood-Year 1996	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	0	10618	106253	6174	292	123337	123337			
	American	WDFW Percent	0	0.00	0.02	0.02	0.12					
		Estimated Prosser Tally	0	0.00	2125.06	124.72	35.06	2284.84	2284.84			
		WDFW Percent	0.21	0.21	0.24	0.24	0.51					
	Naches	Estimated Prosser Tally	0	2230	25501	1497	149	29376	29376			
	Upper	WDFW Percent	0.79	0.79	0.74	0.74	0.37					
	Yakima	Estimated Prosser Tally	0	8388	78627	4552	108	91676	91676			
		Yakima Passage Wild Tally	0	10618	106253	6174	292	123337	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
	Estimate a.	Detection Efficiency										
		Total Passage										
		American Passage										
		Naches Passage										
		American & Naches Passage										
		Upper Yakima Passage									_	
	Estimate b.	Detection Efficiency										
		Total Passage										
		American Passage										
		Naches Passage										
		American & Naches Passage										
		Upper Yakima Passage									-	
	Estimate c.	Detection Efficiency										
*		Total Passage										
		American Passage										
		Naches Passage										
		American & Naches Passage										
		Upper Yakima Passage									_	
	Estimate e.	Detection Efficiency										
		Total Passage										

American Passage
Naches Passage
American & Naches Passage
Upper Yakima Passage

Hatchery		Prosser Hatchery Tally	Expande Elastom	•	 PIT- Tag/Total	Calibration Index
Пасспету		Frosser fractilery rally	Liastoin	i FII	Tag/Tutai	illuex
McN-Str Hatch	Estimate a.	Total Passage				
McN-UnStr Hatch	Estimate b.	Total Passage				
Pooled Str Hatch Pooled UnStr	Estimate c.	Total Passage				
Hatch	Estimate e.	Total Passage				

5.2.Year 1999

1999		Brood-Year 1997	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	41232.89541	407	29431	51920	1577	124569	124569			
	American	WDFW Percent	0.08	0.08	0.08	0.12	0.28					
		Estimated Prosser Tally	3332	33_	2378	6230	442	12415	12415			
		WDFW Percent	0.06	0.06	0.06	0.29	0.33					
	Naches	Estimated Prosser Tally	2499	25_	1784	15057	520	19885	19885			
	Upper	WDFW Percent	0.86	0.86	0.86	0.59	0.39					
	Yakima	Estimated Prosser Tally	35401.98091	350	25269	30633	615	92269	92269			
		Yakima Passage Wild Tally	41233	407	29431	51920	1577	124569	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	18.5%	18.5%	18.5%	25.5%	5.0%					
		Total Passage	222873	2201	159082	203681	31262	619099	619099	571397		0.9229
		American Passage	18010	178	12855	24442	8753	64238	64238	59288		
		Naches Passage	13507	133	9641	59067	10316	92666	92666	85526		
		American & Naches Passage	31517	311	22496	83509	19070	156904	156904	144815		
		Upper Yakima Passage	191355	1890	136586	120172	12192	462195	462195	426583		
McN UnStr Wild	Estimate b.	Detection Efficiency	23.0%	23.0%	23.0%	23.0%	23.0%					
		Total Passage	179338	1771	128008	225822	6860	541799	541799	502917		0.9282
		American Passage	14492	143	10344	27099	1921	53998	53998	50123		
		Naches Passage	10869	107	7758	65488	2264	86486	86486	80280		

		American & Naches Passage	25361	251	18102	92587	4184	140485	140485	130403		
		Upper Yakima Passage	153977	1521	109906	133235	2675	401314	401314	372514		
Pooled Str Wild	Estimate c.	Detection Efficiency	19.4%	19.4%	19.4%	23.0%	3.8%					
		Total Passage	212650	2101	151786	225518	41751	633805	633805	584016		0.9214
		American Passage	17184	170	12266	27062	11690	68371	68371	63000		
		Naches Passage	12888	127	9199	65400	13778	101392	101392	93427		
		American & Naches Passage	30072	297	21465	92462	25468	169764	169764	156428		
		Upper Yakima Passage	182579	1803	130321	133056	16283	464042	464042	427588		
Pooled UnStr												
Wild	Estimate e.	Detection Efficiency	20.3%	20.3%	20.3%	20.3%	20.3%					
		Total Passage	203022	2005	144913	255644	7766	613350	613350	569333		0.9282
		American Passage	16406	162	11710	30677	2174	61130	61130	56743		
		Naches Passage	12304	122	8783	74137	2563	97908	97908	90882		
		American & Naches Passage	28710	284	20493	104814	4737	159038	159038	147624		
		Upper Yakima Passage	174312	1722	124420	150830	3029	454312	454312	421709		
									Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	0	7	1812	31529	1371	34719	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estim a.	Total Passage	0	39	9796	123685	27175	160696	179215	165406	0.1033	0.9229
McN-UnStr Hatch	Estimate b.	Total Passage	0	32	7883	137130	5963	151007	168410	156324		0.9282
Pooled Str Hatch Pooled UnStr	Estimate c.	Total Passage	0	38	9347	136946	36292	182622	203668	187669		0.9214
Hatch	Estimate e.	Total Passage	0	36	8924	155240	6750	170950	190650	176968		0.9282

5.3. Year 2000

		2000	Brood-Year 1998	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer
Ī				12636.7108						
	Wild		Prosser Wild Tally	9	252	11172	19815	814	44690	44690
		American	WDFW Percent	0.16	0.16	0.22	0.47	0.47		
			Estimated Prosser Tally	2044	41	2473	9301	382	14241	14241
			WDFW Percent	0.22	0.22	0.31	0.37	0.37		
		Naches	Estimated Prosser Tally	2788	56_	3462	7279	299	13883	13883
		Upper	WDFW Percent	0.62	0.62	0.47	0.16	0.16		
		Yakima	Estimated Prosser Tally	7805	156	5237	3235	133	16566	16566

		Yakima Passage Wild	42627	252	44472	10015	04.4	44600	Electer	Calibrate	PIT-	Calibratio
	Estimate	Tally	12637	252	11172	19815	814	44690	Elastomer	d Total	Tag/Total	n Index
McN Str Wild	a.	Detection Efficiency	12.5%	12.5%	31.6%	52.6%	31.0%					
		Total Passage	100754	2008	35311	37686	2627	178387	178387	222645		1.2481
		American Passage	16298	325	7816	17689	1233	43362	43362	54120		
		Naches Passage	22225	443	10943	13844	965	48420	48420	60433		
		American & Naches	22223	443	10343	13044	303	40420	40420	00433		
		Passage	38524	768	18759	31533	2199	91782	91782	114553		
		Upper Yakima Passage	62231	1240	16552	6153	429	86605	86605	108091		
	Estimate											
McN UnStr Wild	b.	Detection Efficiency	41.7%	41.7%	41.7%	41.7%	41.7%					
		Total Passage	30333	605	26818	47564	1955	107274	107274	132166		1.2320
		American Passage	4907	98	5936	22326	918	34184	34184	42116		
		Naches Passage American & Naches	6691	133	8311	17472	718	33326	33326	41059		
		Passage	11598	231	14247	39798	1636	67510	67510	83175		
		Upper Yakima Passage	18735	373	12571	7765	319	39764	39764	48991		
Pooled Str Wild	Estimate c.	Detection Efficiency	15.9%	15.9%	30.0%	51.1%	30.0%					
		Total Passage	79697	1589	37229	38770	2713	159998	159998	199476		1.2467
		American Passage	12892	257	8241	18198	1273	40862	40862	50944		
		Naches Passage American & Naches	17580	350	11537	14242	997	44707	44707	55737		
		Passage	30472	607	19778	32440	2270	85568	85568	106681		
		Upper Yakima Passage	49224	981	17451	6330	443	74430	74430	92795		
Pooled UnStr	Estimate											
Wild	e.	Total Passage	41.2%	41.2%	41.2%	41.2%	41.2%					
		Total Passage	30699	612	27141	48137	1979	108568	108568	133760		1.2320
		American Passage	4966	99	6008	22595	929	34596	34596	42624		
		Naches Passage American & Naches	6772	135	8411	17683	727	33728	33728	41554		
		Passage	11738	234	14419	40278	1656	68324	68324	84178		
		Upper Yakima Passage	18961	378	12722	7859	323	40244	40244	49582		
Hatchery		Prosser Hatchery Tally	0	11	12187	59659	21234	93091	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibratio n Index
,			· ·		12107	33033		33031			. 46/ 10141	

	Estimate					11346		_				
McN-Str Hatch	a.	Total Passage	0	91	38517	6	68501	220575	235507	293937	0.0634	1.2481
	Estimate					14320						
McN-UnStr Hatch	b.	Total Passage	0	27	29253	6	50971	223458	238585	293946		1.2320
						11673						
Pooled Str Hatch	Estimate c.	Total Passage	0	72	40610	1	70728	228141	243585	303688		1.2467
Pooled UnStr	Estimate					14493						
Hatch	e.	Total Passage	0	28	29606	3	51586	226152	241461	297490		1.2320

5.4.Year 2001

20	01	Brood-Year 1999	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
			4678.6417									
Wild		Prosser Wild Tally	82	3236	101993	27763	1307	138977	138977			
	American	WDFW Percent								C + !	- Camada Amaba	ata was bankania a
		Estimated Prosser Tally							0	Geneti -	c Sample Analys	sis not Performed
		WDFW Percent										
	Naches	Estimated Prosser Tally	genetic assig	nment to U	Jpper Yakir	na Stock n	ot possible		0	_		
	Upper	WDFW Percent										
	Yakima	Estimated Prosser Tally							0	_		
										Calibra		
		Vakima Dassaga Wild Tally						120077	Flastomor	ted	PIT-	Calibration
		Yakima Passage Wild Tally						138977	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	76.1%	76.1%	76.1%	86.8%	91.9%					
		Total Passage	6150	4253	134076	31992	1421	177893	177893	149124		0.8383
		American Passage										
		Naches Passage										
		American & Naches Passage										
		Upper Yakima Passage										
McN UnStr Wild	Estimate b.	Detection Efficiency	83.9%	83.9%	83.9%	83.9%	83.9%					
		Total Passage	5577	3857	121571	33092	1558	165654	165654	143613		0.8669
		American Passage										
		Naches Passage										
		American & Naches Passage										
		Upper Yakima Passage										
Pooled Str Wild	Estimate c.	Detection Efficiency	77.3%	77.3%	77.3%	85.9%	90.9%					

		Total Passage	6052	4185	131931	32310	1438	175917	175917	148460		0.8439
		American Passage										
		Naches Passage										
		American & Naches Passage										
-		Upper Yakima Passage										
Pooled UnStr Wild	Estimate e.	Detection Efficiency	83.7%	83.7%	83.7%	83.7%	83.7%					
		Total Passage	5589	3865	121828	33162	1561	166004	166004	143917		0.8669
		American Passage										
		Naches Passage										
		American & Naches Passage										
		Upper Yakima Passage										
									Expanded	Expand	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	0	4	96207	148783		261925		ed PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	0	5	126468	171448	18415	316337	333380	279467	0.0511	0.8383
McN-UnStr Hatch	Estimate b.	Total Passage	0	5	114674	177343	20181	312202				0.8669
Pooled Str Hatch	Estimate c.	Total Passage	0	5	124446	173151	18633	316235	333273	281256		0.8439
Pooled UnStr Hatch	Estimate e.	Total Passage	0	5	114916	177717	20223	312862	329717	285847		0.8669
5.5. Year 2002							D t					
2002		Brood-Year 2000	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	66506.36024	26080	101052	40512	62	234213	234213			
	American	WDFW Percent	0.04	0.04	0.04	0.04	0.04					
-		Estimated Prosser Tally	2534	994	3850	1566	2	8945	8945			
		WDFW Percent	0.20	0.20	0.20	0.20	0.20					
-	Naches	Estimated Prosser Tally	13090	5133	19890	8220	13	46345	46345			
	Upper	WDFW Percent	0.77	0.77	0.77	0.76	0.76					
_	Yakima	Estimated Prosser Tally	50882.64387	19954	77313	30726	47	178922	178922			
				_	_	_	_			Calibrated	PIT-	Calibration
		Yakima Passage Wild Tally	66506	26080	101052	40512	62	234213	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	31.7%	31.7%	56.3%	65.9%	25.2%					
		Total Passage	209858	82295	179367	61477	247	533244	533244	466904		0.8756
		Total Lassage	203030	02233	175507	014//	247	333277	333277	400504		0.0750
		American Passage	7995	3135	6833	2376	10	20348	20348	17817		0.0730

Naches Passage

		American & Naches Passage	49300	19333	42137	14850	60	125679	125679	110044		
		Upper Yakima Passage	160558	62963	137230	46628	187	407565	407565	356861		
McN UnStr Wild	Estimate b.	Detection Efficiency	59.5%	59.5%	59.5%	59.5%	59.5%					
		Total Passage	111740	43819	169781	68066	104	393510	393510	349322		0.8877
		American Passage	4257	1669	6468	2631	4	15028	15028	13341		
		Naches Passage	21993	8625	33417	13810	21	77867	77867	69123		
		American & Naches Passage	26250	10294	39885	16441	25	92895	92895	82464		
		Upper Yakima Passage	85490	33525	129896	51625	79	300615	300615	266858		
Pooled Str Wild	Estimate c.	Detection Efficiency	32.8%	32.8%	53.9%	65.2%	7.9%					
		Total Passage	202911	79571	187367	62093	784	532726	532726	467359		0.8773
		American Passage	7730	3031	7138	2400	30	20329	20329	17835		
		Naches Passage	39938	15662	36879	12599	159	105236	105236	92323		
		American & Naches Passage	47668	18693	44016	14998	189	125565	125565	110158		
		Upper Yakima Passage	155243	60878	143350	47095	595	407161	407161	357201		
Pooled UnStr						/						
Wild	Estimate e.	Total Passage	57.6%	57.6%	57.6%	57.6%	57.6%	100505	400505	252242		0.0077
		Total Passage	115447	45272	175414	70324	108	406565	406565	360912		0.8877
		American Passage	4398	1725	6682	2718	4	15527	15527	13784		
		Naches Passage	22723	8911	34526	14269	22	80450	80450	71416		
		American & Naches Passage	27121	10635	41208	16986	26	95977	95977	85200		
		Upper Yakima Passage	88326	34637	134206	53337	82	310588	310588	275712		
		-	_	2254	126040	104460	474	220500	Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	5	2254	126919	101160	171	230509	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	16	7111	225281	153510	680	386599	404834	354470	0.0450	0.8756
McN-UnStr Hatch	Estimate b.	Total Passage	9	3786	213241	169962	288	387287	405555	360015		0.8877
Pooled Str Hatch Pooled UnStr	Estimate c.	Total Passage	16	6876	235328	155049	2164	399432	418273	366950		0.8773
Hatch	Estimate e.	Total Passage	9	3912	220316	175601	298	400136	419010	371959		0.8877
5.6.Year 2003										_		
2002		Drood Voor 2001	Dro March	March	ا نسم ۸	May	Post-	Total	Expanded			

13236

2227

5338

2003 Brood-Year 2001 Pre-March March April Total May May Elastomer Wild Prosser Wild Tally 30359.49166 98537 33294 16582 272 179045 179045 WDFW Percent 0.13 0.13 0.13 0.16 0.16 American

4078

YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

Estimated Prosser Tally

24923

24923

44

		WDFW Percent	0.22	0.22	0.22	0.34	0.34					
	Naches	Estimated Prosser Tally	6570	3589	21325	11400	93	42977	42977			
	Upper	WDFW Percent	0.65	0.65	0.65	0.50	0.50					
	Yakima	Estimated Prosser Tally	19711.01324	10766	63975	16557	135	111144	111144			
										Calibrated	PIT-	Calibration
		Yakima Passage Wild Tally	30359	16582	98537	33294	272	179045	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	45.1%	45.1%	61.9%	54.7%	13.4%					
		Total Passage	67353	36787	159149	60921	2035	326245	326245	308309		0.9450
		American Passage	9047	4941	21378	9767	326	45461	45461	42961		
		Naches Passage	14576	7961	34443	20859	697	78536	78536	74218		
		American & Naches Passage	23624	12903	55821	30626	1023	123997	123997	117180		
		Upper Yakima Passage	43729	23884	103328	30295	1012	202248	202248	191129		
McN UnStr Wild	Estimate b.	Detection Efficiency	58.5%	58.5%	58.5%	58.5%	58.5%					
		Total Passage	51891	28342	168422	56908	466	306029	306029	289106		0.9447
		American Passage	6970	3807	22624	9124	75	42600	42600	40244		
		Naches Passage	11230	6134	36450	19485	159	73458	73458	69395		
		American & Naches Passage	18201	9941	59073	28609	234	116058	116058	109640		
		Upper Yakima Passage	33691	18401	109349	28299	232	189971	189971	179466		
Pooled Str Wild	Estimate c.	Detection Efficiency	47.3%	47.3%	61.3%	51.8%	11.4%					
		Total Passage	64119	35020	160800	64329	2398	326666	326666	308959		0.9458
		American Passage	8613	4704	21600	10314	93	45324	45324	42867		
		Naches Passage	13877	7579	34800	22026	487	78768	78768	74498		
		American & Naches Passage	22490	12283	56400	32339	579	124091	124091	117365		
		Upper Yakima Passage	41630	22737	104400	31990	1819	202575	202575	191594		
Pooled UnStr	F-1:1	D. I. Non Efficiency	F7.40/	F7.40/	F7 40/	F7.40/	F7.40/					
Wild	Estimate e.	Detection Efficiency	57.1%	57.1%	57.1%	57.1%	57.1%	242742	242742	206202		0.0447
		Total Passage	53199	29056	172667	58342	477	313743	313743	296392		0.9447
		American Passage	7146	3903	23194	9354	77	43674	43674	41259		
		Naches Passage	11513	6288	37368	19976	163	75309	75309	71145		
		American & Naches Passage	18659	10191	60562	29330	240	118983	118983	112403		I
		Upper Yakima Passage	34540	18865	112105	29013	237	194760	194760	183989		
Hatchery		Prosser Hatchery Tally	0	2058	67386	15896	233	85573	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index

McN-Str Hatch	Estimate a.	Total Passage	0	4565	108836	29087	1743	144230	160014	151217	0.0986	0.9450
McN-UnStr Hatch	Estimate b.	Total Passage	0	3517	115178	27170	399	146264	162271	153297		0.9447
Pooled Str Hatch	Estimate c.	Total Passage	0	4346	109965	30714	2054	147078	163174	154329		0.9458
Pooled UnStr												
Hatch	Estimate e.	Total Passage	0	3605	118081	27855	409	149950	166361	157161		0.9447

5.7.Year 2004

2004 Wild		Brood-Year 2002	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	_		
		Prosser Wild Tally	5652.215 163	7240	70520	19028	346	102786	102786			
	Amorican	WDFW Percent	0.06	0.04	0.21	0.35	0.31					
	American	Estimated Prosser Tally	365	309	15160	6607	108	22549	22549			
		WDFW Percent	0.34	0.29	0.36	0.34	0.19			•		
	Naches	Estimated Prosser Tally	1913	2119	25721	6475	65	36292	36292			
	Upper	WDFW Percent	0.60 3374.136	0.66	0.42	0.31	0.50					
	Yakima	Estimated Prosser Tally	048	4812	29639	5946	173	43944	43944			
		Yakima Passage Wild Tally	5652	7240	70520	19028	346	102786	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	58.4%	58.4%	58.4%	87.2%	87.2%				. ()	
		Total Passage	9680	12400	120771	21832	397	165079	165079	171641		1.0398
		American Passage	626	529	25963	7580	124	34822	34822	36206		
		Naches Passage American & Naches	3276	3629	44049	7429	74	58457	58457	60781		
		Passage	3901	4158	70012	15009	198	93280	93280	96987		
		Upper Yakima Passage	5778	8241	50759	6822	198	71799	71799	74653		
McN Str Wild	Estimate b.	Detection Efficiency	64.5%	64.5%	64.5%	64.5%	64.5%					
		Total Passage	8760	11221	109291	29489	536	159296	159296	170539		1.0706
		American Passage	566	479	23495	10239	167	34947	34947	37413		
		Naches Passage American & Naches	2964	3284	39862	10034	100	56245	56245	60215		
		Passage	3531	3763	63357	20274	268	91192	91192	97628		
		Upper Yakima Passage	5229	7458	45934	9215	268	68104	68104	72910		
McN UnStr Wild	Estimate c.	Detection Efficiency	59.4%	59.4%	59.4%	86.8%	86.8%					
		Total Passage	9511	12183	118664	21916	398	162673	162673	169397		1.0413
		American Passage	615	520	25510	7610	124	34379	34379	35800		
		Naches Passage American & Naches	3219	3566	43281	7458	75	57597	57597	59978		
		Passage	3833	4086	68791	15068	199	91976	91976	95778		
		Upper Yakima Passage	5678	8097	49873	6849	199	70696	70696	73619		

D		D	66.00/	66.00/	66.00/	66.004	66.00/					
Pooled Str Wild	Estimate e.	Detection Efficiency	66.8%	66.8%	66.8%	66.8%	66.8%	452022	452022	464707		4.0706
		Total Passage	8465	10843	105611	28496	518	153933	153933	164797		1.0706
		American Passage	547	463	22704	9894	162	33770	33770	36153		
		Naches Passage American & Naches	2865	3174	38520	9697	97	54352	54352	58188		
		Passage	3412	3636	61224	19591	259	88122	88122	94341		
		Upper Yakima Passage	5053	7207	44387	8905	259	65811	65811	70456		
Pooled UnStr Wild		Prosser Hatchery Tally	0	1662	99011	83912	283	184868	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch Estimate a.		Total Passage	0	2847	169565	96276	324	269013	282162	293378	0.0466	1.0398
McN-UnStr Hatch	Estimate b.	Total Passage	0	2576	153446	130045	438	286505	300510	321719		1.0706
Pooled Str Hatch	Estimate c.	Total Passage	0	2797	166606	96651	326	266380	279400	290950		1.0413
Pooled UnStr Hatch	Estimate e.	Total Passage	0	2490	148280	125667	423	276860	290392	310888		1.0706
5.8.Year 2005												
2005		Brood-Year 2003	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	-		
			37617.03									
Wild		Prosser Wild Tally	993	3569	66596	6246	63	114092	114092			
American		WDFW Percent	0.21	0.19	0.30	0.32	0.00					
		Estimated Prosser Tally	8047	673	19689	2008	0_	30418	30418			
		WDFW Percent	0.35	0.08	0.35	0.23	0.18					
	Naches	Estimated Prosser Tally	13288	269	23550	1450	11	38568	38568			
		WDFW Percent	0.43	0.74	0.35	0.45	0.82					
	Upper Yakima	Estimated Prosser Tally	16282.00 236	2626	23357	2789	52	45106	45106			
	Takiiiia	Littiliated F10ssel Tally	230	2020	23337	2703	32	43100	43100	Calibrated	PIT-	Calibration
		Yakima Passage Wild Tally	37617	3569	66596	6246	63	114092	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	60.7%	60.7%	71.4%	69.2%	69.2%					
		Total Passage	61931	5876	93219	9028	92	170146	170146	131650		0.7737
		American Passage	13249	1109	27561	2902	0	44820	44820	34679		
		Naches Passage American & Naches	21876	443	32965	2096	16	57396	57396	44410		
		Passage	35125	1552	60525	4998	16	102216	102216	79090		
		Upper Yakima Passage	26806	4324	32694	4030	75	67930	67930	52560		
McN UnStr Wild	Estimate b.	Detection Efficiency	70.0%	70.0%	70.0%	70.0%	70.0%					

		Total Passage	53727	5097	95116	8921	91	162952	162952	125864		0.7724
		American Passage	11494	962	28121	2868	0	43444	43444	33556		
		Naches Passage American & Naches	18978	385	33635	2071	16	55085	55085	42548		
		Passage	30472	1346	61757	4939	16	98530	98530	76104		
		Upper Yakima Passage	23255	3751	33360	3983	74	64422	64422	49760		
Pooled Str Wild	Estimate c.	Detection Efficiency	60.1%	60.1%	71.9%	57.1%	57.1%					
		Total Passage	62602	5939	92669	10945	111	172267	172267	134859		0.7828
		American Passage	13392	1121	27398	3518	0	45429	45429	35564		
		Naches Passage American & Naches	22113	448	32770	2541	20	57892	57892	45321		
		Passage	35506	1569	60168	6059	20	103321	103321	80885		
		Upper Yakima Passage	27096	4370	32501	4886	91	68946	68946	53974		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	68.4%	68.4%	68.4%	68.4%	68.4%					
		Total Passage	54999	5218	97370	9133	93	166813	166813	128846		0.7724
		American Passage	11766	985	28788	2936	0	44474	44474	34351		
		Naches Passage American & Naches	19428	394	34432	2120	17	56390	56390	43556		
		Passage	31194	1378	63220	5056	17	100864	100864	77907		
		Upper Yakima Passage	23806	3840	34150	4077	76	65949	65949	50939		
									Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	21	8	159590	37455	16	197090	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	35	13	223388	54132	24	277593	291340	225424	0.0472	0.7737
McN-UnStr Hatch	Estimate b.	Total Passage	31	11	227934	53495	23	281494	295434	228194		0.7724
Pooled Str Hatch	Estimate c.	Total Passage	36	13	222070	65629	29	287777	302028	236443		0.7828
Pooled UnStr Hatch	Estimate e.	Total Passage	31	11	233334	54762	24	288163	302433	233600		0.7724

5.9.Year 2006

	2006	Brood-Year 2004	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer
			10378.78						
Wild		Prosser Wild Tally	788	400	21517	9248	45	41588	41588
	American	WDFW Percent	7.36%	0.00%	5.52%	5.45%	2.27%		
		Estimated Prosser Tally	764	0	1187	504	1_	2456	2456
		WDFW Percent	39.88%	25.96%	35.95%	39.11%	15.91%		
	Naches	Estimated Prosser Tally	4139	104	7736	3617	7	15602	15602

YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

		WDFW Percent	52.76%	74.04%	58.53%	55.45%	81.82%			•		
	Upper Yakima	Estimated Prosser Tally	5475.924 893	296	12593	5127	37	23530	23530			
		Yakima Passage Wild Tally	10379	400	21517	9248	45	41588	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	21.0%	21.0%	21.0%	23.7%	23.7%	.2000				
	250	Total Passage	49335	1901	102278	38999	191	192705	192705	126524		0.6566
		American Passage	3632	0	5644	2124	4	11404	11404	7488		
		Naches Passage American & Naches	19673	494	36772	15252	30	72222	72222	47419		
		Passage	23305	494	42416	17376	35	83626	83626	54906		
		Upper Yakima Passage	26029	1408	59862	21623	156	109079	109079	71618		
McN UnStr Wild	Estimate b.	Detection Efficiency	20.5%	20.5%	20.5%	20.5%	20.5%					
		Total Passage	50510	1947	104715	45005	220	202397	202397	131973		0.6520
		American Passage	3719	0	5779	2451	5	11953	11953	7794		
		Naches Passage American & Naches	20142	505	37648	17601	35	75932	75932	49511		
		Passage	23861	505	43427	20052	40	87885	87885	57305		
		Upper Yakima Passage	26650	1441	61288	24953	180	114512	114512	74667		
Pooled Str Wild	Estimate c.	Detection Efficiency	20.1%	20.1%	20.1%	22.0%	22.0%					
		Total Passage	51735	1994	107254	42031	206	203220	203220	133218		0.6555
		American Passage	3809	0	5919	2289	5	12021	12021	7880		
		Naches Passage American & Naches	20631	518	38561	16438	33	76180	76180	49939		
		Passage	24439	518	44480	18727	37	88201	88201	57819		
		Upper Yakima Passage	27296	1476	62774	23304	168	115019	115019	75399		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	20.7%	20.7%	20.7%	20.7%	20.7%					
		Total Passage	50065	1930	103791	44608	218	200612	200612	130809		0.6520
		American Passage	3686	0	5728	2429	5	11847	11847	7725		
		Naches Passage American & Naches	19964	501	37316	17446	35	75262	75262	49075		
		Passage	23650	501	43044	19875	40	87110	87110	56800		
		Upper Yakima Passage	26415	1429	60747	24733	179	113502	113502	74009		
Hatchery		Prosser Hatchery Tally	3	9	46130	45561	19	91722	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index

McN-Str Hatch	Estimate a.	Total Passage	14	43	219277	192140	81	411555	431559	283348	0.0464	0.6566
McN-UnStr Hatch	Estimate b.	Total Passage	15	44	224500	221728	93	446380	468077	305209		0.6520
Pooled Str Hatch	Estimate c.	Total Passage	15	45	229944	207074	87	437166	458415	300508		0.6555
Pooled UnStr Hatch	Estimate e.	Total Passage	15	44	222520	219773	92	442444	463950	302518		0.6520
5.10.Year 2007												
2007		Brood-Year 2005	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	•		
			541.5116									
Wild		Prosser Wild Tally	347	523	17147	11159	189	29559	29559			
	American	WDFW Percent	9.10%	14.50%	6.81%	16.75%	11.54%					
		Estimated Prosser Tally	49	76	1167	1869	22	3183	3183			
		WDFW Percent	18.20%	32.30%	24.72%	29.78%	26.07%					
	Naches	Estimated Prosser Tally	99	169	4239	3323	49	7879	7879			
		WDFW Percent	72.70%	53.20%	68.47%	53.47%	62.39%					
	Upper		393.6789									
	Yakima	Estimated Prosser Tally	584	278	11740	5967	118	18497	18497			
		Yakima Passage Wild Tally	542	523	17147	11159	189	29559	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	30.2%	30.2%	30.2%	21.9%	21.9%	29339	Liastoffier	TOtal	rag/ rotar	ilidex
IVICIN SLI VVIIU	EStimate a.	Total Passage	1791	1728	56711	51048	866	112144	112144	99769		0.8897
		S .	163	251	3860	8550		12144	12144	11498		0.8897
		American Passage					100					
		Naches Passage American & Naches	326	558	14022	15200	226	30332	30332	26985		
		Passage	489	809	17882	23750	326	43256	43256	38483		
		Upper Yakima Passage	1302	920	38829	27297	540	68888	68888	61287		
McN UnStr Wild	Estimate b.	Detection Efficiency	26.3%	26.3%	26.3%	26.3%	26.3%					
		Total Passage	2058	1986	65172	42413	719	112349	112349	98319		0.8751
		American Passage	187	288	4436	7104	83	12098	12098	10588		
		Naches Passage American & Naches	375	642	16114	12629	188	29946	29946	26207		
		Passage	562	930	20550	19733	271	42045	42045	36794		
		Upper Yakima Passage	1496	1057	44622	22680	449	70304	70304	61525		
Pooled Str Wild	Estimate c.	Detection Efficiency	28.3%	28.3%	28.3%	23.7%	23.7%					
		Total Passage	1916	1849	60674	47178	800	112417	112417	99265		0.8830

		American Passage	174	268	4130	7902	92	12567	12567	11097		
		Naches Passage American & Naches	349	597	15001	14048	209	30204	30204	26670		
		Passage	523	865	19131	21950	301	42771	42771	37767		
		Upper Yakima Passage	1393	984	41543	25228	499	69646	69646	61498		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	26.2%	26.2%	26.2%	26.2%	26.2%					
		Total Passage	2068	1996	65477	42611	723	112874	112874	98779		0.8751
		American Passage	188	289	4457	7137	83	12155	12155	10637		
		Naches Passage American & Naches	376	645	16189	12688	188	30087	30087	26329		
		Passage	565	934	20646	19825	272	42241	42241	36967		
		Upper Yakima Passage	1503	1062	44831	22786	451	70633	70633	61813		
Hatchery		Prosser Hatchery Tally	0	629	61236	37776	281	99922	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	2079	202534	172814	1285	378712	396759	352979	0.0455	0.8897
McN-UnStr Hatch	Estimate b.	Total Passage	0	2389	232752	143581	1068	379790	397889	348202		0.8751
Pooled Str Hatch	Estimate c.	Total Passage	0	2224	216687	159714	1188	379813	397912	351359		0.8830
Pooled UnStr Hatch	Estimate e.	Total Passage	0	2400	233841	144253	1073	381568	399751	349831		0.8751
5.11. Year 2008										_		
2008		Brood-Year 2006	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	_		
			7037.374									
Wild		Prosser Wild Tally	779	1052	44603	16505	443	69641	69641			
	American	WDFW Percent	8.33%	0.00%	5.22%	5.00%	14.81%					
		Estimated Prosser Tally	586	0	2327	825	66	3804	3804_	ž		
		WDFW Percent	8.33%	14.29%	25.22%	31.11%	51.85%					
	Naches	Estimated Prosser Tally	586	150	11248	5135	230	17349	17349	XI.		
	Upper	WDFW Percent	83.33% 5864.478	85.71%	69.57%	63.89%	33.33%					
	Yakima	Estimated Prosser Tally	983	902	31028	10545	148	48487	48487			
		Yakima Passage Wild Tally	7037	1052	44603	16505	443	69641	Elastomer	Calibrated Total	PIT- Tag/Total	Calibratior Index

Total Passage

American Passage

0.8684

			024	240	45757	44440	2422	22220	22220	20044		
		Naches Passage American & Naches	821	210	15757	14419	2123	33330	33330	28944		
		Passage	1643	210	19017	16736	2729	40335	40335	35027		
		Upper Yakima Passage	8214	1263	43468	29610	1365	83919	83919	72874		
McN UnStr Wild	Estimate b.	Detection Efficiency	46.1%	46.1%	46.1%	46.1%	46.1%					
		Total Passage	15257	2281	96703	35784	961	150986	150986	130742		0.8659
		American Passage	1271	0	5045	1789	142	8248	8248	7142		
		Naches Passage American & Naches	1271	326	24386	11133	498	37614	37614	32571		
		Passage	2543	326	29431	12922	641	45863	45863	39714		
		Upper Yakima Passage	12715	1955	67272	22862	320	105123	105123	91029		
Pooled Str Wild	Estimate c.	Detection Efficiency	48.8%	48.8%	66.7%	31.2%	7.9%					
		Total Passage	14422	2156	66892	52920	5644	142034	142034	123735		0.8712
		American Passage	1202	0	3490	2646	836	8174	8174	7121		
		Naches Passage American & Naches	1202	308	16868	16464	2927	37769	37769	32903		
		Passage	2404	308	20358	19110	3763	45943	45943	40024		
		Upper Yakima Passage	12018	1848	46534	33810	1881	96091	96091	83711		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	41.4%	41.4%	41.4%	41.4%	41.4%					
		Total Passage	16979	2538	107612	39821	1069	168019	168019	145492		0.8659
		American Passage	1415	0	5615	1991	158	9179	9179	7948		
		Naches Passage American & Naches	1415	363	27137	12389	554	41858	41858	36246		
		Passage	2830	363	32752	14380	713	51037	51037	44194		
		Upper Yakima Passage	14149	2175	74861	25441	356	116983	116983	101298		
Hatchery		Prosser Hatchery Tally	0	233	43465	65164	930	109793	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	326	60890	182980	8595	252791	268938	233543	0.0600	0.8684
McN-UnStr Hatch	Estimate b.	Total Passage	0	505	94235	141281	2017	238037	253242	219289		0.8659
Pooled Str Hatch	Estimate c.	Total Passage	0	477	65185	208936	11851	286449	304746	265485		0.8712
Pooled UnStr Hatch	Estimate e.	Total Passage	0	561	104866	157219	2245	264891	281812	244028		0.8659
5.12.Year 2009		-										
2009		Brood-Year 2007	Pre-	March	April	Mav	Post-	Total	Expanded	-		

March

543

March

14956

April

27585

May

9394

May

2450

YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

Brood-Year 2007

Prosser Wild Tally

2009

Wild

Elastomer

54927

Total

54927

		WDFW Percent	9.80%	10.93%	12.06%	10.95%	36.29%					
	American	Estimated Prosser Tally	1466	59	3327	1029	889	6769	6769			
		WDFW Percent	35.60%	32.43%	29.25%	40.78%	28.23%					
	Naches	Estimated Prosser Tally	5324	176	8068	3831	691	18090	18090			
		WDFW Percent	54.60%	56.64%	58.69%	48.27%	35.48%					
	Upper		8166.224									
	Yakima	Estimated Prosser Tally	368	307	16191	4534	869	30067	30067			
		Yakima Passage Wild Tally	14956	543	27585	9394	2450	54927	Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	28.4%	28.4%	21.2%	12.5%	12.5%					
		Total Passage	52671	1911	130062	75334	19645	279622	279622	240827		0.8613
		American Passage	5162	209	15686	8249	7129	36434	36434	31379		
		Naches Passage American & Naches	18751	620	38038	30723	5545	93676	93676	80680		
		Passage	23912	828	53724	38972	12674	130111	130111	112059		
		Upper Yakima Passage	28758	1082	76338	36362	6971	149512	149512	128768		
McN UnStr Wild	Estimate b.	Detection Efficiency	15.3%	15.3%	15.3%	15.3%	15.3%					
		Total Passage	98002	3555	180751	61551	16051	359910	359910	318180		0.8841
		American Passage	9604	388	21799	6740	5825	44356	44356	39213		
		Naches Passage American & Naches	34889	1153	52863	25102	4530	118537	118537	104793		
		Passage	44493	1541	74662	31842	10355	162893	162893	144006		
		Upper Yakima Passage	53509	2014	106089	29710	5695	197017	197017	174173		
Pooled Str Wild	Estimate c.	Detection Efficiency	26.2%	26.2%	21.3%	11.4%	11.4%					
		Total Passage	57137	2073	129580	82196	21434	292419	292419	250846		0.8578
		American Passage	5599	226	15628	9000	7778	38232	38232	32797		
		Naches Passage American & Naches	20341	672	37897	33521	6050	98481	98481	84480		
		Passage	25940	899	53525	42521	13828	136713	136713	117277		
		Upper Yakima Passage	31197	1174	76055	39674	7606	155705	155705	133569		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	14.6%	14.6%	14.6%	14.6%	14.6%					
		Total Passage	102487	3718	189022	64368	16785	376379	376379	332739		0.8841
		American Passage	10044	406	22797	7048	6091	46386	46386	41008		
		Naches Passage	36485	1206	55282	26251	4738	123961	123961	109588		

		American & Naches										
		Passage	46529	1612	78078	33299	10829	170347	170347	150596		
		Upper Yakima Passage	55958	2106	110943	31069	5956	206032	206032	182143		
									Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	31	42	23787	39531	303	63695	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	111	148	112155	317029	2431	431874	454638	391561	0.0501	0.8613
McN-UnStr Hatch	Estimate b.	Total Passage	206	276	155865	259027	1986	417360	439358	388416		0.8841
Pooled Str Hatch	Estimate c.	Total Passage	120	161	111739	345905	2653	460577	484854	415923		0.8578
Pooled UnStr Hatch	Estimate e.	Total Passage	216	288	162997	270879	2077	436457	459463	406189		0.8841
5.13.Year 2010										<u>-</u>		
2010		Brood-Year 2008	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	-		
Wild		Prosser Wild Tally	3862	3204	70483	24871	637	103056	103056			
	American	WDFW Percent	30.31%	0.00%	14.16%	11.88%	0.00%					
	American	Estimated Prosser Tally	1170	0	9981	2955	0	14106	14106			
		WDFW Percent	7.35%	19.50%	37.13%	33.63%	75.49%					
	Naches	Estimated Prosser Tally	284	625	26167	8364	481	35921	35921			
		WDFW Percent	62.34%	80.50%	48.71%	54.49%	24.51%			•		
	Upper		2407.390									
	Yakima	Estimated Prosser Tally	06	2579	34334	13552	156	53029	53029			
									Expanded	Calibrated	PIT-	Calibration
		Yakima Passage Wild Tally	3862	3204	70483	24871	637	103056	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	45.0%	45.0%	45.0%	59.2%	43.6%					
		Total Passage	8584	7122	156665	42045	1459	215875	215875	221188		1.0246
		American Passage	2602	0	22186	4995	0	29782	29782	30515		
		Naches Passage	631	1389	58163	14140	1101	75424	75424	77281		
		American & Naches	2222	1200	00240	10125	1101	105206	105306	107700		
		Passage	3233	1389	80349	19135	1101	105206	105206	107796		
		Upper Yakima Passage	5351	5733	76316	22910	358	110668	110668	113392		
McN UnStr Wild	Estimate b.	Detection Efficiency	52.2%	52.2%	52.2%	52.2%	52.2%					
		Total Passage	7396	6137	134998	47635	1219	197386	197386	201737		1.0220
		American Passage	2242	0	19117	5659	0	27018	27018	27614		
		Naches Passage American & Naches	544	1197	50119	16020	921	68800	68800	70316		
		Passage	2785	1197	69236	21679	921	95818	95818	97930		

		Upper Yakima Passage	4611	4940	65761	25956	299	101568	101568	103807		
Pooled Str Wild	Estimate c.	Detection Efficiency	45.4%	45.4%	45.4%	57.4%	35.4%					
		Total Passage	8507	7058	155261	43333	1796	215955	215955	221228		1.0244
		American Passage	2578	0	21987	5148	0	29713	29713	30439		
		Naches Passage American & Naches	625	1377	57642	14573	1356	75572	75572	77418		
		Passage	3204	1377	79629	19721	1356	105285	105285	107856		
		Upper Yakima Passage	5303	5682	75632	23612	440	110669	110669	113372		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	51.3%	51.3%	51.3%	51.3%	51.3%					
		Total Passage	7530	6248	137440	48497	1241	200957	200957	205387		1.0220
		American Passage	2282	0	19463	5761	0	27507	27507	28113		
		Naches Passage American & Naches	553	1219	51026	16310	937	70044	70044	71588		
		Passage	2836	1219	70489	22071	937	97551	97551	99702		
		Upper Yakima Passage	4694	5030	66951	26426	304	103406	103406	105685		
Hatchery		Prosser Hatchery Tally	0	204	58305	129493	737	188739	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	453	129598	218915	1688	350653	367535	376582	0.0459	1.0246
McN-UnStr Hatch	Estimate b.	Total Passage	0	390	111674	248021	1411	361496	378900	387253		1.0220
Pooled Str Hatch	Estimate c.	Total Passage	0	449	128436	225621	2078	356584	373751	382878		1.0244
Pooled UnStr Hatch	Estimate e.	Total Passage	0	397	113694	252508	1436	368036	385755	394259		1.0220
5.14.Year 2011												
2011		Brood-Year 2009	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	-		
Wild		Prosser Wild Tally	24773	4142	30530	15792	91	75328	75328			
	American	WDFW Percent	8.64%	0.00%	3.49%	5.92%	16.65%					
	American	Estimated Prosser Tally	2140	0	1066	935	15	4156	4156			
		WDFW Percent	18.19%	19.75%	23.96%	13.10%	0.00%					
	Naches	Estimated Prosser Tally	4506	818	7316	2069	0	14709	14709			
		WDFW Percent	73.17%	80.25%	72.55%	80.98%	83.35%					
	Upper Yakima	Estimated Prosser Tally	18126.20 455	3324	22149	12788	75	56463	56463			
		Yakima Passage Wild Tally	24773	4142	30530	15792	91	75328	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index

McN Str Wild	Estimate a.	Detection Efficiency	17.5%	17.5%	28.7%	30.9%	30.9%					
		Total Passage	141442	23652	106452	51115	293	322954	322954	299949		0.9288
		American Passage	12221	0	3716	3027	49	19012	19012	17657		
		Naches Passage American & Naches	25728	4671	25508	6697	0	62605	62605	58146		
		Passage	37949	4671	29224	9724	49	81617	81617	75803		
		Upper Yakima Passage	103493	18980	77228	41391	244	241337	241337	224146		
McN UnStr Wild	Estimate b.	Detection Efficiency	27.9%	27.9%	27.9%	27.9%	27.9%					
		Total Passage	88870	14861	109524	56652	325	270231	270231	254125		0.9404
		American Passage	7678	0	3823	3355	54	14910	14910	14021		
		Naches Passage American & Naches	16165	2935	26245	7423	0	52768	52768	49623		
		Passage	23844	2935	30067	10777	54	67678	67678	63644		
		Upper Yakima Passage	65026	11926	79457	45875	271	202554	202554	190481		
Pooled Str Wild	Estimate c.	Detection Efficiency	17.6%	17.6%	28.3%	29.5%	29.5%					
		Total Passage	140705	23528	107826	53479	307	325846	325846	303711		0.9321
		American Passage	12157	0	3764	3167	51	19138	19138	17838		
		Naches Passage American & Naches	25594	4647	25838	7007	0	63086	63086	58800		
		Passage	37751	4647	29601	10174	51	82224	82224	76639		
		Upper Yakima Passage	102954	18882	78225	43306	256	243622	243622	227072		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	27.3%	27.3%	27.3%	27.3%	27.3%					
		Total Passage	90699	15166	111779	57819	332	275795	275795	259357		0.9404
		American Passage	7836	0	3901	3424	55	15217	15217	14310		
		Naches Passage American & Naches	16498	2995	26785	7576	0	53854	53854	50644		
		Passage	24335	2995	30686	10999	55	69071	69071	64954		
		Upper Yakima Passage	66365	12171	81093	46819	276	206724	206724	194403		
Hatchery		Prosser Hatchery Tally	70	4100	57391	66684	580	128824	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	398	23409	200108	215843	1877	441635	461721	428831	0.0435	0.9288
McN-UnStr Hatch	Estimate b.	Total Passage	250	14708	205884	239222	2080	462144	483164	454365		0.9404
Pooled Str Hatch	Estimate c.	Total Passage	396	23287	202692	225825	1963	454164	474820	442564		0.9321
Pooled UnStr Hatch	Estimate e.	Total Passage	255	15011	210123	244147	2123	471659	493111	463720		0.9404

5.15.Year 2012

2012		Brood-Year 2010	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	_		
Wild		Prosser Wild Tally	15922	6786	14719	5327	993	43746	43746			
	American	WDFW Percent	10.99%	5.31%	6.17%	13.65%	23.46%					
	American	Estimated Prosser Tally	1750	360	908	727	233	3978	3978			
		WDFW Percent	31.62%	29.60%	29.32%	38.48%	29.45%					
	Naches	Estimated Prosser Tally	5034	2009	4316	2050	292	13700	13700			
	Upper	WDFW Percent	57.39% 9138.041	65.09%	64.51%	47.87%	47.09%					
	Yakima	Estimated Prosser Tally	429	4416	9495	2550	468	26067	26067			
		Yakima Passage Wild Tally	15922	6786	14719	5327	993	43746	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	10.6%	10.6%	6.8%	6.4%	6.4%					
		Total Passage	149599	63757	215132	82800	15434	526721	526721	301173		0.5718
		American Passage	16439	3386	13274	11299	3621	48019	48019	27456		
		Naches Passage American & Naches	47298	18874	63077	31863	4545	165658	165658	94721		
		Passage	63738	22260	76350	43162	8166	213676	213676	122178		
		Upper Yakima Passage	85861	41497	138782	39638	7267	313045	313045	178995		
McN UnStr Wild	Estimate b.	Detection Efficiency	6.8%	6.8%	6.8%	6.8%	6.8%					
		Total Passage	233096	99343	215485	77987	14537	640449	640449	368824		0.5759
		American Passage	25615	5276	13295	10642	3411	58239	58239	33539		
		Naches Passage American & Naches	73698	29408	63180	30011	4281	200579	200579	115510		
		Passage	99312	34684	76476	40654	7692	258818	258818	149049		
		Upper Yakima Passage	133784	64659	139010	37334	6845	381631	381631	219775		
Pooled Str Wild	Estimate c.	Detection Efficiency	17.2%	12.0%	8.0%	6.2%	6.2%					
		Total Passage	92790	56530	184609	86385	16102	436417	436417	252029		0.5775
		American Passage	10197	3002	11390	11788	3778	40155	40155	23189		
		Naches Passage American & Naches	29337	16735	54127	33243	4742	138184	138184	79801		
		Passage	39534	19737	65518	45031	8520	178339	178339	102990		
		Upper Yakima Passage	53256	36794	119091	41354	7582	258077	258077	149038		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	7.4%	7.4%	7.4%	7.4%	7.4%					

YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

		Total Passage	216431	92241	200080	72412	13497	594661	594661	342455		0.5759
		American Passage	23783	4898	12345	9881	3167	54075	54075	31141		
		Naches Passage	68429	27306	58663	27866	3975	186239	186239	107252		
		American & Naches Passage	92212	32204	71008	37747	7142	240314	240314	138393		
		Upper Yakima Passage	124219	60036	129071	34665	6356	354347	354347	204063		
		opper ramma rassage			120072	3.000		00.10.7	Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	0	1485	20279	22395	919	45078	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	0	13952	296397	348103	14288	672740	707207	404372	0.0487	0.5718
McN-UnStr Hatch	Estimate b.	Total Passage	0	21739	296884	327872	13457	659952	693764	399527		0.5759
Pooled Str Hatch	Estimate c.	Total Passage	0	12370	254344	363177	14906	644798	677833	391446		0.5775
Pooled UnStr Hatch	Estimate e.	Total Passage	0	20185	275659	304431	12495	612770	644164	370963		0.5759
5.16.Year 2013												
2013		Brood-Year 2011	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	-		
Wild		Prosser Wild Tally	28502	18683	50994	8258	336	106774	106774			
	American	WDFW Percent	8.23%	2.30%	5.72%	16.96%	6.39%					
	American	Estimated Prosser Tally	2346	429	2916	1401	22	7113	7113			
		WDFW Percent	17.43%	20.59%	27.50%	29.53%	7.85%					
	Naches	Estimated Prosser Tally	4968	3847	14023	2439	26	25303	25303			
		WDFW Percent	74.34%	77.11%	66.78%	53.51%	85.76%					
	Upper		21188.49									
	Yakima	Estimated Prosser Tally	724	14407	34055	4419	289	74358	74358			
		Yakima Passage Wild Tally	28502	18683	50994	8258	336	106774	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	26.7%	26.7%	37.1%	23.4%	23.4%	100774	Elastoffiel	TOLAI	Tag/Total	muex
IVICIN SEE VVIII	Estimate a.	,			137366			250705	350785	250055		1 0207
		Total Passage	106741 8785	69970		35270 5982	1437 92	350785 24321	24321	358055 24826		1.0207
		American Passage Naches Passage		1608	7855 37774		_	81314	81314	82999		
		American & Naches	18605	14408	5///4	10415	113	01314	61514	02333		
		Passage	27390	16016	45628	16397	205	105636	105636	107825		
		Upper Yakima Passage	79352	53955	91738	18873	1232	245149	245149	250230		
McN UnStr Wild	Estimate b.	Detection Efficiency	32.6%	32.6%	32.6%	32.6%	32.6%					
		Total Passage	87352	57260	156284	25309	1031	327236	327236	333839		1.0202

		American Passage	7189	1316	8936	4293	66	21800	21800	22240		
		Naches Passage	15225	11791	42976	7474	81	77546	77546	79111		
		American & Naches	13223	11/91	42370	7474	01	77340	77340	79111		
		Passage	22415	13106	51912	11766	147	99346	99346	101351		
		Upper Yakima Passage	64938	44154	104372	13543	884	227890	227890	232489		
Pooled Str Wild	Estimate c.	Detection Efficiency	27.5%	27.5%	35.1%	21.1%	21.1%					
		Total Passage	103702	67978	145428	39056	1591	357755	357755	365468		1.0216
		American Passage	8535	1562	8316	6624	102	25139	25139	25680		
		Naches Passage	18075	13997	39991	11533	125	83721	83721	85526		
		American & Naches										
		Passage	26610	15560	48306	18157	227	108860	108860	111206		
		Upper Yakima Passage	77092	52418	97122	20898	1365	248896	248896	254261		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	30.5%	30.5%	30.5%	30.5%	30.5%					
		Total Passage	93410	61231	167121	27064	1103	349929	349929	356990		1.0202
		American Passage	7688	1407	9556	4590	70	23312	23312	23782		
		Naches Passage American & Naches	16281	12608	45956	7992	87	82924	82924	84597		
		Passage	23969	14015	55512	12582	157	106235	106235	108379		
		Upper Yakima Passage	69441	47216	111609	14482	946	243693	243693	248611		
									Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	0	13014	69719	20263	879	103874	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	0	48738	187807	86542	3753	326839	343892	351019	0.0496	1.0207
McN-UnStr Hatch	Estimate b.	Total Passage	0	39885	213671	62100	2693	318349	334959	341718		1.0202
Pooled Str Hatch	Estimate c.	Total Passage	0	47350	198830	95831	4155	346166	364227	372079		1.0216
Pooled UnStr Hatch	Estimate e.	Total Passage	0	42651	228489	66406	2879	340425	358187	365415		1.0202

5.17.Year 2014

2014		Brood-Year 2012	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer	_		
Wild		Prosser Wild Tally	1589	4340	14949	11897	959	33735	33735			
	American	WDFW Percent	11.65%	12.03%	9.09%	11.95%	13.86%					
	American	Estimated Prosser Tally	185	522	1360	1421	133	3621	3621			
		WDFW Percent	41.19%	21.74%	30.16%	38.12%	0.00%					
	Naches	Estimated Prosser Tally	655	944	4509	4535	0	10643	10643			
	Upper	WDFW Percent	47.16% 749.6015	66.23%	60.74%	49.93%	86.14%					
	Yakima	Estimated Prosser Tally	614	2874	9080	5940	826	19471	19471			
									Expanded	Calibrated	PIT-	Calibration
		Yakima Passage Wild Tally	1589	4340	14949	11897	959	33735	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	13.9%	13.9%	13.9%	13.9%	6.0%					
		Total Passage	11447	31257	107660	85679	15923	251966	251966	250881		0.9957
		American Passage	1334	3760	9791	10236	2208	27329	27329	27211		
		Naches Passage American & Naches	4715	6795	32474	32662	0	76646	76646	76317		
		Passage	6049	10555	42266	42898	2208	103975	103975	103528		
		Upper Yakima Passage	5398	20701	65395	42781	13715	147991	147991	147354		
McN UnStr Wild	Estimate b.	Detection Efficiency	13.8%	13.8%	13.8%	13.8%	13.8%					
		Total Passage	11481	31349	107976	85931	6930	243667	243667	241676		0.9918
		American Passage	1338	3771	9820	10266	961	26156	26156	25942		
		Naches Passage American & Naches	4729	6815	32570	32758	0	76872	76872	76244		
		Passage	6066	10586	42390	43024	961	103027	103027	102186		
		Upper Yakima Passage	5414	20762	65587	42907	5969	140639	140639	139490		
Pooled Str Wild	Estimate c.	Detection Efficiency	13.1%	13.1%	13.1%	13.1%	5.0%					
		Total Passage	12091	33016	113718	90500	19031	268355	268355	267433		0.9966
		American Passage	1409	3972	10342	10812	2638	29173	29173	29073		
		Naches Passage American & Naches	4980	7178	34302	34500	0	80959	80959	80681		
		Passage	6389	11149	44644	45312	2638	110132	110132	109754		
		Upper Yakima Passage	5702	21866	69074	45188	16392	158223	158223	157679		
Pooled UnStr Wild	Estimate e.	Total Passage	13.0%	13.0%	13.0%	13.0%	13.0%					

YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

		Total Passage	12197	33306	114717	91295	7363	258877	258877	256762		0.9918
		American Passage	1421	4007	10433	10907	1021	27788	27788	27561		
		Naches Passage American & Naches	5024	7241	34603	34803	0	81670	81670	81003		
		Passage	6445	11247	45036	45710	1021	109459	109459	108564		
		Upper Yakima Passage	5752	22058	69681	45585	6342	149419	149419	148198		
Hatchery		Prosser Hatchery Tally	0	1493	16126	30753	1114	49486	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	0	10749	116139	221480	18480	366847	385256	383598	0.0478	0.9957
McN-UnStr Hatch	Estimate b.	Total Passage	0	10781	116480	222131	8043	357434	375371	372304		0.9918
Pooled Str Hatch	Estimate c.	Total Passage	0	11354	122673	233942	22087	390056	409630	408222		0.9966
Pooled UnStr Hatch	Estimate e.	Total Passage	0	11454	123751	235997	8545	379747	398803	395545		0.9918

5.18. Year 2015

	2015	Brood-Year 2013	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer	.		
Wild		Prosser Wild Tally	2658	13541	35320	11639	4	63162	63162			
	American	WDFW Percent	13.86%	11.62%	8.92%	14.74%	14.74%					
	American	Estimated Prosser Tally	368	1573	3149	1716	1	6807	6807	_		
		WDFW Percent	16.80%	26.32%	23.13%	24.09%	24.09%					
	Naches	Estimated Prosser Tally	447	3564	8169	2804	1	14985	14985	_		
	Upper	WDFW Percent	69.34%	62.06%	67.96%	61.17%	61.17%					
	Yakima	Estimated Prosser Tally	1842.998005	8404	24002	7119	2	41370	41370			
									Expanded	Calibrated	PIT-	Calibra tion
		Yakima Passage Wild Tally	2658	13541	35320	11639	4	63162	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	52.9%	52.9%	52.9%	56.3%	56.3%					
		Total Passage	5028	25614	66809	20689	6	118146	118146	120848		1.0229
		American Passage	697	2976	5956	3050	1	12680	12680	12970		
		Naches Passage American & Naches	845	6742	15451	4985	2	28024	28024	28665		
		Passage	1541	9718	21408	8035	3	40704	40704	41635		
		Upper Yakima Passage	3486	15897	45401	12655	4	77442	77442	79213		
McN UnStr Wil	d Estimate b.	Detection Efficiency	53.2%	53.2%	53.2%	53.2%	53.2%					
		Total Passage	4999	25468	66427	21890	7	118791	118791	121334		1.0214

		Amaniaan Daasaa	c02	2050	F033	2227	1	12002	12002	12076		
		American Passage	693	2959	5922	3227	1	12802	12802	13076		
		Naches Passage	840	6703	15363	5274	2	28182	28182	28786		
		American & Naches	4522	0000	24205	0501	2	40004	40004	41001		
		Passage	1533	9662	21285	8501	3	40984	40984	41861		
		Upper Yakima Passage	3466	15806	45141	13389	4	77807	77807	79472		
Pooled Str Wild	Estimate c.	Detection Efficiency	37.1%	37.1%	62.1%	57.6%	57.6%					
		Total Passage	7170	36531	56858	20221	6	120786	120786	123289		1.0207
		American Passage	994	4244	5069	2981	1	13289	13289	13564		
		Naches Passage American & Naches	1205	9615	13150	4872	2	28843	28843	29441		
		Passage	2198	13859	18219	7853	2	42132	42132	43005		
		Upper Yakima Passage	4972	22671	38639	12368	4	78654	78654	80284		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	51.4%	51.4%	51.4%	51.4%	51.4%					
		Total Passage	5173	26355	68741	22653	7	122930	122930	125561		1.0214
		American Passage	717	3062	6129	3339	1	13248	13248	13531		
		Naches Passage American & Naches	869	6937	15898	5458	2	29164	29164	29788		
		Passage	1586	9999	22027	8797	3	42412	42412	43320		
		Upper Yakima Passage	3587	16356	46714	13856	4	80518	80518	82241		
												Calibra
									Expanded	Expanded	PIT-	tion
Hatchery		Prosser Hatchery Tally	0	43016	90070	26254	11	159351	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	0	81366	170371	46668	19	298424	317197	324451	0.0592	1.0229
McN-UnStr Hatch	Estimate b.	Total Passage	0	80901	169397	49377	21	299696	318550	325368		1.0214
Pooled Str Hatch	Estimate c.	Total Passage	0	116043	144995	45612	19	306669	325961	332715		1.0207
Pooled UnStr Hatch	Estimate e.	Total Passage	0	83720	175300	51098	21	310139	329649	336705		1.0214

5.19. Year 2016

	2016	Brood-Year 2014	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer
Wild		Prosser Wild Tally	2900	3922	4227	3478	73	14599	14599
	American	WDFW Percent	5.69%	7.42%	9.44%	13.00%	3.71%		
		Estimated Prosser Tally	165	291	399	452	3	1310	1310
		WDFW Percent	26.41%	23.18%	38.42%	34.52%	0.00%		
	Naches	Estimated Prosser Tally	766	909	1624	1200	0	4500	4500

										_		
	Upper	WDFW Percent	67.90%	69.40%	52.13%	52.49%	96.29%					
	Yakima	Estimated Prosser Tally	1968.880324	2722	2204	1825	70	8790	8790			
		Valiana Danasa Wild Talla	2000	2022	4227	2470	72	1.4500	Expanded	Calibrated	PIT-	Calibra tion
		Yakima Passage Wild Tally	2900	3922	4227	3478	73	14599	Elastomer	Total	Tag/Total	Index
McN Str Wild	Estimate a.	Detection Efficiency	5.5%	5.5%	5.5%	22.8%	22.8%					
		Total Passage	52843	71469	77035	15257	320	216925	216925	51305		0.2365
		American Passage	3007	5304	7273	1983	12	17578	17578	4157		
		Naches Passage American & Naches	13956	16568	29600	5266	0	65391	65391	15465		
		Passage	16963	21872	36873	7250	12	82969	82969	19623		
		Upper Yakima Passage	35881	49598	40162	8008	308	133956	133956	31682		
McN UnStr Wild	Estimate b.	Detection Efficiency	9.6%	9.6%	9.6%	9.6%	9.6%					
		Total Passage	30115	40730	43902	36116	757	151620	151620	39037		0.2575
		American Passage	1714	3022	4145	4694	28	13603	13603	3502		
		Naches Passage American & Naches	7953	9442	16869	12466	0	46731	46731	12031		
		Passage	9667	12465	21014	17161	28	60334	60334	15534		
		Upper Yakima Passage	20448	28265	22888	18956	729	91286	91286	23503		
Pooled Str Wild	Estimate c.	Detection Efficiency	5.9%	5.9%	4.4%	21.5%	21.5%					
		Total Passage	49149	66473	96748	16177	339	228887	228887	53478		0.2336
		American Passage	2797	4933	9134	2103	13	18979	18979	4434		
		Naches Passage American & Naches	12980	15410	37175	5584	0	71149	71149	16624		
		Passage	15777	20343	46309	7687	13	90128	90128	21058		
		Upper Yakima Passage	33372	46131	50439	8491	326	138759	138759	32420		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	8.4%	8.4%	8.4%	8.4%	8.4%					
		Total Passage	34538	46712	50350	41421	868	173890	173890	44770		0.2575
		American Passage	1965	3466	4754	5384	32	15601	15601	4017		
		Naches Passage American & Naches	9122	10829	19347	14297	0	53594	53594	13799		
		Passage	11087	14295	24100	19681	32	69196	69196	17815		
		Upper Yakima Passage	23451	32417	26250	21740	836	104694	104694	26955		

Hatchery		Prosser Hatchery Tally	0	9155	14039	20515	66	136488	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibra tion Index
McN-Str Hatch	Estimate a.	Total Passage	0	166846	255836	90006	289	1499037	1587340	375419	0.0556	0.2365
McN-UnStr Hatch	Estimate b.	Total Passage	0	95085	145799	213058	685	1417512	1501013	386455		0.2575
Pooled Str Hatch	Estimate c.	Total Passage	0	155183	321302	95434	307	1632683	1728859	403938		0.2336
Pooled UnStr Hatch	Estimate e.	Total Passage	0	109051	167214	244352	785	1625716	1721481	443217		0.2575

5.20.Year 2017

201	7	Brood-Year 2015	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	2542	458	993	1352	24	5369	5369			
	American	WDFW Percent	10.20%	11.21%	15.80%	10.78%	37.16%					
	American	Estimated Prosser Tally	296	440	668	375	27	1805	1805	_		
		WDFW Percent	31.70%	27.73%	27.10%	29.57%	11.47%					
	Naches	Estimated Prosser Tally	919	1087	1146	1028	8	4189	4189	_		
	Upper	WDFW Percent	58.10%	61.06%	57.10%	59.65%	51.37%			_		
	Yakima	Estimated Prosser Tally	1684.712029	2395	2414	2074	37	8605	8605			
		Yakima Passage Wild Tally	2900	3922	4227	3478	73	14599	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	5.5%	5.5%	5.5%	9.3%	9.3%					
		Total Passage	45879	8257	17922	14554	258	86871	86871	60411		0.6954
		American Passage	4680	926	2832	1569	96	10102	10102	7025		
		Naches Passage American & Naches	14544	2289	4857	4304	30	26024	26024	18097		
		Passage	19223	3215	7688	5873	126	36125	36125	25122		
		Upper Yakima Passage	26656	5042	10233	8682	133	50745	50745	35289		
McN UnStr Wild	Estimate b.	Detection Efficiency	7.2%	7.2%	7.2%	7.2%	7.2%					
		Total Passage	35465	6383	13854	18862	335	74899	74899	49700		0.6636
		American Passage	3617	716	2189	2033	124	8679	8679	5759		
		Naches Passage American & Naches	11242	1770	3754	5578	38	22383	22383	14853		
		Passage	14860	2485	5943	7611	163	31062	31062	20612		
		Upper Yakima Passage	20605	3897	7910	11251	172	43836	43836	29088		
Pooled Str Wild	Estimate c.	Detection Efficiency	5.9%	5.9%	5.9%	9.7%	9.7%					

		Total Passage	43257	7785	16897	14009	249	82198	82198	57051		0.6941
		American Passage	4412	873	2670	1510	92	9557	9557	6633		
		Naches Passage American & Naches	13712	2159	4579	4143	29	24622	24622	17089		
		Passage	18125	3031	7249	5653	121	34179	34179	23723		
		Upper Yakima Passage	25132	4754	9648	8357	128	48019	48019	33328	I	
Pooled UnStr Wild	Estimate e.	Detection Efficiency	7.6%	7.6%	7.6%	7.6%	7.6%					
		Total Passage	33442	6019	13064	17786	316	70627	70627	46866		0.6636
		American Passage	3411	675	2064	1917	117	8184	8184	5431		
		Naches Passage	10601	1669	3540	5260	36	21107	21107	14006		
		American & Naches	44040	2244	5604	7477	454	20204	20204	10126		
		Passage	14012	2344	5604	7177	154	29291	29291	19436		
		Upper Yakima Passage	19430	3675	7459	10609	162	41336	41336	27429		
Hatchery		Prosser Hatchery Tally	1	235	1943	5727	41	7947	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	18	4241	35067	61646	441	386839	412204	286652	0.061	0.6954
McN-UnStr Hatch	Estimate b.	Total Passage	9	3279	27108	79893	572	425176	453055	300633	0.1029	0.6636
Pooled Str Hatch	Estimate c.	Total Passage	12	3999	33063	59338	425	369465	393691	273248	0.1029	0.6941
Pooled UnStr Hatch	Estimate e.	Total Passage	9	3092	25561	75336	539	400926	427215	283486	0.1029	0.6636

5.21.Year 2018

	2018		Brood-Year 2016	Pre-March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild			Prosser Wild Tally	6091	1173	8517	1374	96	17251	17251			
		American	WDFW Percent	8.80%	3.30%	5.82%	10.40%	25.00%	0.00				
			Estimated Prosser Tally	255	129	246	362	18	1010	1010	_		
			WDFW Percent	31.70%	27.73%	27.10%	29.57%	11.47%	0.00				
		Naches	Estimated Prosser Tally	919	1087	1146	1028	8	4189	4189	-		
		Upper	WDFW Percent	58.10%	61.06%	57.10%	59.65%	51.37%	0.00				
		Yakima	Estimated Prosser Tally	1684.712029	2395	2414	2074	37	8605	8605			
			Yakima Passage Wild Tally	2859	3612	3805	3464	64	13804	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN	Str Wild	Estimate a.	Detection Efficiency	9.8%	9.8%	9.8%	4.9%	4.9%		•			
			Total Passage	62211	11978	86996	27928	1951	191064	191064	128380		0.6719

		American Passage	5475	395	5061	2904	488	14323	14323	9624		
		Naches Passage	19721	3321	23576	8259	224	55101	55101	37024		
		American & Naches	25100	2746	20627	44464	740	60.40.4	60404	46647		
		Passage	25196	3716	28637	11164	712	69424	69424	46647		
_		Upper Yakima Passage	36145	7314	49674	16659	1002	110794	110794	74445		
McN UnStr Wild	Estimate b.	Detection Efficiency	8.4%	8.4%	8.4%	8.4%	8.4%					
		Total Passage	72640	13986	101579	16386	1145	205735	205735	122910		0.5974
		American Passage	6392	462	5909	1704	286	14753	14753	8814		
		Naches Passage American & Naches	23027	3878	27528	4846	131	59410	59410	35493		
		Passage	29419	4339	33437	6550	418	74163	74163	44307		
		Upper Yakima Passage	42204	8540	58001	9774	588	119107	119107	71157		
Pooled Str Wild	Estimate c.	Detection Efficiency	13.7%	13.7%	9.3%	4.4%	4.4%					
		Total Passage	44443	8557	91787	30928	2161	177875	177875	131489		0.7392
		American Passage	3911	282	5340	3216	540	13289	13289	9824		
		Naches Passage American & Naches	14088	2373	24874	9147	248	50730	50730	37500		
		Passage	17999	2655	30214	12363	788	64019	64019	47324		
		Upper Yakima Passage	25821	5225	52410	18448	1110	103015	103015	76150		
Pooled UnStr Wild	Estimate e.	Detection Efficiency	8.2%	8.2%	8.2%	8.2%	8.2%					
		Total Passage	74408	14326	104052	16785	1173	210744	210744	136769		0.6490
		American Passage	6548	473	6053	1745	293	15112	15112	9808		
		Naches Passage	23587	3972	28198	4964	135	60856	60856	39495		
		American & Naches										
		Passage	30135	4445	34251	6709	428	75969	75969	49302		
_		Upper Yakima Passage	43231	8748	59413	10012	602	122007	122007	79180		
			_						Expanded	Expanded	PIT-	Calibration
Hatchery		Prosser Hatchery Tally	0	1470	15058	2640	392	19560	Elastomer	PIT	Tag/Total	Index
McN-Str Hatch	Estimate a.	Total Passage	0	15011	153802	53661	7968	386839	411667	276607	0.0603	0.6719
McN-UnStr Hatch	Estimate b.	Total Passage	0	17527	179584	31484	4675	425176	452465	270311		0.5974
Pooled Str Hatch	Estimate c.	Total Passage	0	10724	162273	59425	8824	369465	393178	290644		0.7392
Pooled UnStr Hatch	Estimate e.	Total Passage	0	17954	183956	32251	4789	400926	426658	276892		0.6490

5.22.Year 2019

20	19	Brood-Year 2017	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	15489	3937	10596	23290	63	53374	53374			
	American	WDFW Percent	9.90%	12.44%	14.70%	14.71%	0.00%	0.00%				
		Estimated Prosser Tally	287	488	621	511	0	1908	1908			
		WDFW Percent	20.00%	20.33%	22.70%	30.22%	0.00%	0.00%				
	Naches	Estimated Prosser Tally	580	797	959	1051	0	3387	3387			
	Upper	WDFW Percent	76.22%	73.17%	74.47%	66.19%	100.0%	0.00%				
	Yakima	Estimated Prosser Tally	2,210	2,870	3,148	2,302	73	10,602	10,602	_		
		Yakima Passage Wild Tally	3077	4154	4729	3864	73	15897	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	18.5%	18.5%	18.5%	39.6%	39.6%					
		Total Passage	83,879	21,319	57,385	58,761	158	221,503	221,503	168,119		0.7590
		American Passage	8,305	2,652	8,434	8,641	-	28,032	28,032	21,276		
		Naches Passage American & Naches	16,776	4,333	13,024	17,755	-	51,888	51,888	39,382		
		Passage	25,081	6,985	21,457	26,397	-	79,919	79,919	60,658		
		Upper Yakima Passage	63,930	15,600	42,734	38,892	158	161,313	161,313	122,435		
McN UnStr Wild	Estimate b.	Detection Efficiency	27.1%	27.1%	27.1%	27.1%	27.1%					
		Total Passage	57,169	14,530	39,111	85,963	231	197,005	197,005	154,848		0.7860
		American Passage	5,660	1,807	5,748	12,642	-	25,857	25,857	20,324		
		Naches Passage American & Naches	11,434	2,953	8,876	25,974	-	49,238	49,238	38,701		
		Passage	17,094	4,761	14,624	38,616	-	75,095	75,095	59,025		
		Upper Yakima Passage	43,572	10,632	29,126	56,896	231	140,457	140,457	110,401		
Pooled Str Wild	Estimate c.	Detection Efficiency	20.1%	20.1%	20.1%	35.9%	35.9%					

<u> </u>			Dro-	·			Post-		Evnanded			
Year 2020												
Pooled UnStr Hatch	Estimate e.	Total Passage	-	3,237	88,707	275,073	710	400,926	424,452	343,212		0.808
Pooled Str Hatch	Estimate c.	Total Passage	-	4,506	123,513	214,108	552	369,465	391,145	319,579		0.817
McN-UnStr Hatch	Estimate b.	Total Passage	-	3,337	91,444	283,561	732	425,176	450,126	353,803		0.786
McN-Str Hatch	Estimate a.	Total Passage	-	4,897	134,169	193,833	500	386,839	409,539	310,836	0.0554	0.759
Hatchery		Prosser Hatchery Tally	-	904	24,775	76,824	198	102,701	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibratio Index
		Upper Yakima Passage	42,268	10,314	28,254	55,193	224	136,253	136,253	110,174		
		American & Naches Passage	16,582	4,618	14,187	37,460	-	72,847	72,847	58,904		
		Naches Passage	11,092	2,865	8,611	25,197	-	47,764	47,764	38,622		
		American Passage	5,491	1,753	5,576	12,263	-	25,083	25,083	20,282		
		Total Passage	55,458	14,095	37,941	83,390	224	191,108	191,108	154,530		0.80
Pooled UnStr Wild	Estimate e.	Detection Efficiency	27.9%	27.9%	27.9%	27.9%	27.9%					
		Upper Yakima Passage	58,827	14,354	39,340	42,961	175	155,656	155,656	127,176		
		American & Naches Passage	23,079	6,427	19,753	29,158	-	78,417	78,417	64,069		
		Naches Passage	15,437	3,987	11,989	19,613	-	51,026	51,026	41,690		
		American Passage	7,642	2,440	7,764	9,545	-	27,391	27,391	22,379		
		Total Passage	77,184	19,618	52,827	64,908	175	214,712	214,712	175,427		0.81

Post-Expanded Pre-2020 Brood-Year 2017 May Total March April March Elastomer May Wild **Prosser Wild Tally** 8843 2602 30737 10851 58 53092 53092 **WDFW Percent** 3.78% 6.50% 2.84% 3.60% 0.00% 0.00% American **Estimated Prosser Tally** 110 255 120 125 0 610 610 Naches WDFW Percent 20.00% 20.33% 22.70% 30.22% 0.00% 0.00%

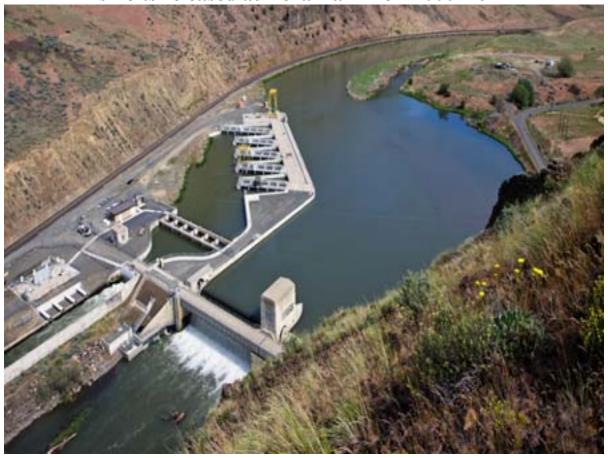
YKFP Project Year 2022 M&E Annual Report, Appendix C, Prosser Spring Chinook smolt passage

		Estimated Prosser Tally	580	797	959	1051	0	3387	3387			
	Upper	WDFW Percent	76.22%	76.22%	76.22%	76.22%	76.2%	76.22%				
	Yakima	Estimated Prosser Tally	2,210	2,989	3,222	2,650	56	11,127	11,127			
		Yakima Passage Wild Tally	2900	4041	4301	3826	56	15124	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibration Index
McN Str Wild	Estimate a.	Detection Efficiency	23.7%	23.7%	23.7%	58.0%	58.0%					
		Total Passage	37,350	10,991	129,819	18,722	101	196,983	196,983	201,313		1.0220
		American Passage	1,413	715	3,683	673	-	6,484	6,484	6,627		
		Naches Passage American & Naches	7,470	2,234	29,463	5,657	-	44,824	44,824	45,809		
		Passage	8,883	2,949	33,145	6,331	-	51,308	51,308	52,436		
		Upper Yakima Passage	28,467	8,377	98,943	14,269	77	150,133	150,133	153,433		
McN UnStr Wild	Estimate b.	Detection Efficiency	33.4%	33.4%	33.4%	33.4%	33.4%					
		Total Passage	26,445	7,782	91,916	32,450	174	158,767	158,767	168,133		1.0590
		American Passage	1,001	506	2,608	1,167	-	5,282	5,282	5,593		
		Naches Passage American & Naches	5,289	1,582	20,860	9,805	-	37,536	37,536	39,750		
		Passage	6,290	2,088	23,468	10,972	-	42,818	42,818	45,344		
		Upper Yakima Passage	20,155	5,931	70,055	24,732	133	121,007	121,007	128,145		
Pooled Str Wild	Estimate c.	Detection Efficiency	32.3%	20.1%	20.1%	35.9%	35.9%					
		Total Passage	27,409	8,065	92,297	18,321	98	146,190	146,190	151,265		1.0347
		American Passage	1,037	525	2,618	659	-	4,839	4,839	5,007		
		Naches Passage American & Naches	5,482	1,639	20,947	5,536	-	33,604	33,604	34,770		
		Passage	6,519	2,164	23,565	6,195	-	38,443	38,443	39,777		
		Upper Yakima Passage	20,890	6,147	70,345	13,963	75	111,420	111,420	115,288		

Pooled UnStr Wild	Estimate e.	Detection Efficiency	44.0%	44.0%	44.0%	44.0%	44.0%					_
		Total Passage	20,117	5,919	69,920	24,685	133	120,773	120,773	115,300		0.9547
		American Passage	761	385	1,984	888	-	4,018	4,018	3,836		
		Naches Passage	4,023	1,203	15,868	7,459	-	28,553	28,553	27,259		
		American & Naches Passage		1,588	17,852	8,347	-	32,571	32,571	31,095		
		Upper Yakima Passage	15,332	4,512	53,290	18,814	101	92,049	92,049	87,877		
Hatchery		Prosser Hatchery Tally	8	1,419	64,446	82,305	789	148,967	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibration Index
McN-Str Hatch	Estimate a.	Total Passage	32	5,995	272,195	142,004	1,361	421,586	447,027	456,852	0.0569	1.0220
McN-UnStr Hatch	Estimate b.	Total Passage	24	4,245	192,723	246,127	2,358	445,452	472,332	500,195		0.7860
Pooled Str Hatch	Estimate c.	Total Passage	24	4,399	193,521	138,959	1,331	338,210	358,619	371,069		0.8170
Pooled UnStr Hatch	Estimate e.	Total Passage	17	3,229	146,602	187,226	1,794	375,875	398,556	380,494		0.8086

5.24.Year 2021

2021		Brood-Year 2019	Pre- March	March	April	May	Post- May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	12,482	3,849	34,195	11,816	1,365	0	0			
	American	WDFW Percent	5.9%	3.7%	6.6%	11.1%	11.1%	0.0%				
		Estimated Prosser Tally	732	143	2,264	1,313	152	4604	4,604			
	Naches	WDFW Percent	31.1%	12.6%	23.7%	31.8%	7.4%	0.0%				
		Estimated Prosser Tally	3,876	483	8,102	3,760	101	16322	16,322			
	Upper Yakima	WDFW Percent	76.2%	76.2%	76.2%	76.2%	76.2%	76.2%				
		Estimated Prosser Tally	9,513	2,933	26,062	9,006	1,040	48554	48,554			
		Yakima Passage Wild Tally	14,122	3,560	36,427	14,079	1,293	69480	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibratio n Index
McN Str Wild	Estimate a.	Detection Efficiency	36.9%	36.9%	36.9%	30.3%	30.3%					
		Total Passage	33,808	10,424	92,617	39,038	4,509	180,396	180,396	88,720		0.4918
		American Passage	1,984	388	6,131	4,338	501	13,342	13,342	6,562		
		Naches Passage American & Naches	10,498	1,309	21,944	12,421	334	46,506	46,506	22,872		
		Passage	12,482	1,697	28,076	16,759	835	59,848	59,848	29,434		ļ
		Upper Yakima Passage	25,767	7,945	70,589	29,754	3,436	137,491	137,491	67,619	; ;	<u> </u>
McN UnStr Wild	Estimate b.	Detection Efficiency	35.3%	35.3%	35.3%	35.3%	35.3%					
		Total Passage	35,376	10,907	96,913	33,489	3,868	180,554	180,554	87,880	:	0.4867
		American Passage	2,076	406	6,416	3,721	430	13,048	13,048	6,351	:	
		Naches Passage American & Naches	10,985	1,370	22,962	10,656	287	46,259	46,259	22,515		
		Passage	13,061	1,776	29,378	14,377	716	59,307	59,307	28,866		
		Upper Yakima Passage	26,962	8,313	73,864	25,524	2,948	137,611	137,611	66,979	:	<u> </u>
Pooled Str Wild	Estimate c.	Detection Efficiency	29.6%	29.6%	28.2%	31.1%	31.1%					
		Total Passage	42,217	13,017	121,237	38,013	4,390	218,874	218,874	106,092		0.4847
		American Passage	2,477	484	8,026	4,224	488	15,699	15,699	7,610		
		Naches Passage American & Naches	13,109	1,635	28,725	12,095	325	55,889	55,889	27,090		
		Passage	15,586	2,119	36,751	16,319	813	71,588	71,588	34,700	<u>.</u>	
		Upper Yakima Passage	32,176	9,921	92,403	28,972	3,346	166,818	166,818	80,859		


Pooled UnStr											:	
Wild	Estimate e.	Detection Efficiency	30.1%	30.1%	30.1%	30.1%	30.1%					
		Total Passage	41,504	12,797	113,700	39,290	4,538	211,829	211,829	103,103		0.4867
		American Passage	2,435	476	7,527	4,366	504	15,309	15,309	7,451		
		Naches Passage American & Naches	12,888	1,607	26,939	12,501	336	54,272	54,272	26,415		
		Passage	15,323	2,083	34,467	16,867	840	69,580	69,580	33,867		
		Upper Yakima Passage	31,633	9,753	86,658	29,946	3,459	161,448	161,448	78,581		
Hatchery		Prosser Hatchery Tally	0	11,730	56,272	46,835	4,334	119,172	Expanded Elastomer	Expanded PIT	PIT- Tag/Total	Calibratio n Index
McN-Str Hatch	Estimate a.	Total Passage	0	31,772	152,416	154,734	14,317	353,239	382,605	188,167	0.0768	0.4918
McN-UnStr Hatch	Estimate b.	Total Passage	0	33,246	159,485	132,740	12,282	337,753	365,831	178,059		0.4867
Pooled Str Hatch	Estimate c.	Total Passage	0	39,674	199,514	150,671	13,941	403,801	437,370	212,000		0.4847
Pooled UnStr Hatch	Estimate e.	Total Passage	0	39,005	187,111	155,733	14,410	396,258	429,200	208,903		0.4867

5.25.Year 2022

2022		Brood-Year 2020	Pre- March	March	April	May	Post-May	Total	Expanded Elastomer			
Wild		Prosser Wild Tally	11,352	1,821	21,730	2,444	31	37,378	37,378			
	American	WDFW Percent	7.9%	7.0%	5.9%	5.1%	0.0%					
		Estimated Prosser Tally	900	128	1,278	125	0	2432	2,432			
	Naches	WDFW Percent	47.4%	46.8%	45.6%	50.0%	0.0%					
		Estimated Prosser Tally	5,380	852	9,916	1,222	0	17369	17,369	_		
	Upper Yakima	WDFW Percent	44.7%	46.2%	48.5%	44.9%	100.0%					
		Estimated Prosser Tally	5,072	841	10,536	1,097	31	17577	17,577			
		Yakima Passage Wild Tally	11,352	1,821	21,730	2,444	31	37378	Expanded Elastomer	Calibrated Total	PIT- Tag/Total	Calibrati on Index
McN Str Wild	Estimate a.	Detection Efficiency	36.8%	36.8%	36.8%	30.3%	30.3%					
		Total Passage	30,820	4,944	58,994	8,074	103	102,936	102,936	273,284		2.6549
		American Passage	2,444	347	3,470	414	0	6,675	6,675	11,047	! !	
		Naches Passage	14,605	2,313	26,921	4,037	0	47,876	47,876	79,230	! ! !	
		American & Naches Passage	17,049	2,660	30,391	4,451	0	54,552	54,552	90,278		

								Ī		:	:	:
		Upper Yakima Passage	13,771	2,284	28,603	3,623	103	48,384	48,384	80,071	:	;
McN UnStr Wild	Estimate b.	Detection Efficiency	35.3%	35.3%	35.3%	35.3%	35.3%			! ! !	! ! !	: :
		Total Passage	32,174	5,162	61,586	6,927	88	105,936	105,936	69,036	! ! !	0.6517
		American Passage	2,551	362	3,623	355	0	6,892	6,892	4,491	: :	:
		Naches Passage	15,247	2,415	28,103	3,463	0	49,228	49,228	32,081	! ! !	! !
		American & Naches Passage	17,798	2,777	31,726	3,819	0	56,120	56,120	36,572	i ! !	!
		Upper Yakima Passage	14,375	2,385	29,860	3,108	88	49,816	49,816	32,464	<u> </u> 	
Pooled Str Wild	Estimate c.	Detection Efficiency	29.5%	29.5%	29.5%	29.5%	29.5%					: !
		Total Passage	38,431	6,165	73,562	8,274	105	126,537	126,537	82,462		0.6517
		American Passage	3,048	433	4,327	424	0	8,232	8,232	5,365		
		Naches Passage	18,212	2,884	33,569	4,137	0	58,802	58,802	38,320		<u> </u>
		American & Naches Passage	21,259	3,317	37,896	4,561	0	67,033	67,033	43,684		! !
		Upper Yakima Passage	17,171	2,848	35,667	3,713	105	59,504	59,504	38,777		! ! !
Pooled UnStr										! !	1 1 !	!
Wild	Estimate e.	Detection Efficiency	31.1%	31.1%	31.1%	31.1%	31.1%			: !	: !	: !
		Total Passage	36,520	5,859	69,905	7,862	100	120,247	120,247	78,362	! !	0.6517
		American Passage	2,896	411	4,112	403	0	7,823	7,823	5,098	!	!
		Naches Passage	17,306	2,741	31,900	3,931	0	55,878	55,878	36,415	!	
		American & Naches Passage	20,203	3,152	36,012	4,334	0	63,701	63,701	41,513	! ! !	<u> </u>
		Upper Yakima Passage	16,317	2,707	33,893	3,528	100	56,546	56,546	36,850	 	! ! !
Uatchon,		Drossor Hatchary Tally	0	3,608	63,724	22 512	208	91,052	Expanded	Expanded PIT	PIT-	Calibrati
Hatchery		Prosser Hatchery Tally	0	3,000	173,00	23,512	200	91,032	Elastomer	PII	Tag/Total	on Index
McN-Str Hatch	Estimate a.	Total Passage	0	9,795	6	77,679	686	261,167	282,878	185,257	0.0786	1.6549
NA-NI II. Chu II. hab	Fathers b	Total Danses	0	10.226	180,60	66.620	500	250.050	270 544	402.452	 	0.6547
McN-UnStr Hatch	Estimate b.	Total Passage	0	10,226	215,72	66,638	588	_ 258,058	279,511	182,152	<u> </u>	0.6517
Pooled Str Hatch	Estimate c.	Total Passage	0	12,214	9	79,597	703	308,243	333,868	217,575	! ! !	0.6517
Pooled UnStr					205,00			222.245	2.7.25	200 756		
Hatch	Estimate e.	Total Passage	0	11,607	4	75,640	668	292,919	317,270	206,758	<u> </u>	0.6517

Appendix D Survival to McNary Dam for PIT-tagged Spring Chinook Salmon smolts released at Roza Dam from 1999-2022

Prepared by:
Shubha Pandit, Mark Johnston and Bill Bosch
Yakama-Klickitat Fisheries Project
Yakama Nation Fisheries
P.O. Box 151, Toppenish, WA 98948, USA

July 27, 2023

Table of Contents

EXECUTIVE SUMMARY	3
1.0 INTRODUCTION	6
2.0 METHODOLOGY	8
3.0 RESULTS AND DISCUSSION	13
3.1 FISH SIZE	13
3.2 YAKIMA RIVER FLOW AND WATER TEMPERATURE BELOW PROSSER DAM	13
3.3. TRAVEL TIME FROM THE RELEASE SITE (ROZA DAM) TO MCNARY DAM	15
1. DETECTION PERCENTAGE	16
2. SURVIVAL RATE	16
3.4. COMPARISON OF NATURAL- AND HATCHERY-ORIGIN SMOLT SURVIVAL FROM ROZA DAM TO M	CNARY
DAM DURING THE "LATE" MIGRATION PERIOD	20
3.5. COMPARISON OF EARLY AND LATE MIGRATING NATURAL-ORIGIN SMOLT SURVIVAL TO MCNAR	Y DAM 23
3.6. WEEKLY SURVIVAL RATE OF NATURAL- AND HATCHERY-ORIGIN SMOLT	23
4.0 ACKNOWLEDGMENTS	31
5.0 REFERENCES	31

Executive Summary

This report summarizes the results of an evaluation to estimate survival rate and travel time of juvenile Spring Chinook Salmon (*Oncorhynchus tshawytscha*) released into the Roza Dam bypass during 2022. This evaluation is part of an ongoing study that was initiated in 1999. Differences between natural and hatchery rearing environments can have a significant influence over the demographic attributes of naturally-spawned and hatchery-origin Chinook salmon beginning in early developmental stages. Moreover, hatchery-origin smolts released into the natural environment experience in-stream conditions that are dramatically different from a controlled hatchery rearing environment. Therefore, attempts to infer the survival rate for natural-origin smolts based on survival of hatchery-reared smolts (or vice versa) can be biased by relative differences in fish size, behaviors such as outmigration timing, fitness, and environmental conditions encountered during outmigration. Our investigation of interannual variation in survival rate and travel time for both natural- and hatchery-origin outmigrating smolts will help managers implement effective strategies for maintaining abundance and viability of the natural spring-run Chinook salmon population in the Upper Yakima River Basin.

Number of fish PIT tagged, release time, and fish size

In 2022, we tagged 4,769 hatchery-origin smolts and 342 natural-origin smolts with passive integrated transponder (PIT) tags (a total of 5,111) at Roza Dam, and released them from March 17^{th} through April 7^{nd} into the Roza Dam bypass system (ROZ - Release into the Roza Facility Bypass Flume/Pipe). The fork lengths of the released hatchery-origin smolts that were PIT-tagged at the dam ranged from 81 mm to 154 mm (average 116.8mm). Hatchery fish were significantly larger than PIT-tagged natural-origin fish (F_{1,20}=70.86, p<0.01), which ranged in fork length from 73 mm to 136 mm (average 100.5 mm).

Travel time (Roza Dam to McNary Dam) for natural and hatchery origin smolts

Smolt of Spring chinook generally exhibited immediate outmigration behavior after release. The travel time for both natural and hatchery-origin smolts from Roza Dam to McNary Dam in the Columbia River Basin is subject to variation based on various factors, including river flow, water temperature, and the presence of obstacles. In this report, we present the travel time as the duration taken by the smolts to migrate from the release point at the Roza Diversion's

Bypass (approximately 206 kilometers upstream to the mouth of the Yakima River) to the downstream detection site at McNary Dam on the Columbia River (approximately 64 kilometers downstream from the Yakima River confluence). The travel time from Roza Dam to McNary Dam for hatchery-origin smolts ranged from 8 to 58 days (with a mean \pm SE of 28.24 \pm 1.65 days). On the other hand, the travel time for natural-origin smolts ranged from 42 to 47 days (with an average of 43.6 \pm 0.9 days). Notably, this year, the natural-origin fish were detected at McNary after 42 days, whereas in previous years, they were detected much earlier, for example, 8 days after release in 2021. The hatchery-origin smolts were relatively larger in size compared to the natural-origin smolts, and they took less time to travel to McNary Dam than the natural fish. This indicates that the fish size had an impact on the travel time.

Roza-McNary Dam survival rate for natural origin and hatchery origin smolts

In this study, the survival rates from release at Roza Dam to downstream detection at McNary Dam were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model, which has been commonly used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile anadromous fish species (salmon and steelhead, see Tuomikoski et al. 2012). However, survival estimates in prior years (1999 to 2018) were based on a logistic regression model described in the 2018 annual report. We further evaluated the effects of river flow on survival rate by introducing flow as a covariate in the CJS model. Based on the CJS model, the average survival probability from Roza Dam to McNary Dam for the pooled populations (hatchery- and natural-origin smolts combined) released at Roza Dam during 2022 was $28.0\pm13.20\%$ (mean \pm SE), however the hatchery-origin survival rate was $33.2\pm18.4\%$, which was higher than that of the natural-origin smolts $(12.0\pm10.0\%)$.

As we have in the past, fish were categorized as early and late migrating based on passage time at Roza Dam. For 2022 natural-origin smolts, the survival rate to McNary Dam of the early migrating group was 20.0%±10.0%, while survival for the late migrating group was approximately 3.5%. Within the late period, when both hatchery- and natural-origin smolts were migrating, the natural-origin survival rate to McNary Dam of (3.5%±NA) was lower than the hatchery-origin survival rate (25.8±14.0%). However, when comparing mean survival rates of

the late period release over all previous years of analysis (1999-2022), the survival rate was higher for the natural-origin fish ($F_{1,40} = 1.15$, p = 0.29) than the hatchery-origin.

1.0 Introduction

In recent years, naturally spawning Pacific salmon populations have declined relative to historical abundances, resulting in many ESA listings and heightened conservation concerns (Prince et al. 2019; Rand et al. 2012; Ford 2011; Gustafson et al. 2007). The recovery of depressed stocks is contingent on obtaining accurate and precise estimates of survival through the hydro system. Juvenile salmon emigrating from the Yakima Basin must navigate downstream through several dams in the Yakima and Columbia rivers during out-migration to the ocean. For over a decade, hatchery production in Yakima basin has been used to supplement natural salmon populations in order to benefit harvest opportunity and to boost declining natural populations. These hatchery programs are likely to continue and possibly increase significantly within the Columbia River Basin (WDFW 2019).

Since 1999, the Yakama Nation has been studying downstream survival of juvenile salmon, with a focus on understanding whether or not survival, and the factors affecting survival, are similar between hatchery-origin and natural-origin groups. The study involves annual releases of hatchery-origin and natural-origin spring Chinook salmon smolts with inserted passive integrated transponder (PIT) tags. There is some evidence to suggest that captive rearing of salmon under certain hatchery protocols (e.g. segregated programs) confers a genetic fitness deficit (domestication) to hatchery fish released into the natural environment compared to naturally reared salmon (Lynch and O' Hely 2001; Ford 2002; Frankham et al. 2002). While the CESRF program has attempted to minimize differences between hatchery- and natural-origin smolts, artificial rearing environments are still starkly different from the natural in-river conditions fish experience after release. Differences between natural and hatchery rearing environments have a significant influence over the demographic attributes of natural- and hatchery-origin Chinook salmon beginning early in their development. Inferring outmigration survival rates for one rearing history based on survival rates for smolts with a different history can be misleading due to differences in fish size, behavior, fitness, and acclimation to environmental conditions encountered during outmigration. In the CESRF program, the desired acclimation window as well as water permit limitations force an emigration window that is different than that of natural-origin fish (Bosch 2021), and this in turn will affect survival rates as flow conditions may vary considerably even on a daily basis depending on weather events.

Hatchery-origin smolts are often larger, likely due to temperature and feed regimens and nutrition content that differ from the temperatures and diet that natural-origin fish experience. Survival rate may also vary with river flow and fish size during the outmigration period (Bosch et al., 2023). Juvenile outmigration is a critical phase in the overall life history of salmon (NPPC, 1992). Mortality rate is likely to increase as a function of migration distance (often hundreds of kilometers), where risk is compounded by exposure to several factors, including predation, extreme temperatures and diseases (Miller et al., 2014), and entrainment at diversions or hydroelectric dams. Furthermore, outmigration is concurrent with the smoltification process, where a fish undergoes physiological, behavioral and biochemical changes in preparation for saltwater habitat (Hoar 1976). Thus, it is important that the coordination between smoltification, outmigration, and arrival time to the estuary be preserved (Folmar and Dickhoff 1980) and remain on schedule with physiological readiness for saltwater.

The timing and duration of outmigration are believed to be affected by many factors, such as fish size, photoperiod, discharge, precipitation, lunar phase, water temperature and type of origin (natural vs. hatchery) (Duston and Saunders 1995; McCormick et al. 1995; McCormick 2012; Sykes and Shrimpton 2009; Zydlewski et al. 2014). In order to determine whether or not downstream survival rate and downstream migration dynamics of Spring Chinook smolts differ between natural and hatchery populations, our study focused on the following objectives:

- 1) evaluate the survival rate from the release location (Roza Dam) to McNary Dam (McN) between hatchery- and natural-origin smolts based on PIT-tag detections,
- 2) determine whether, for natural-origin Spring Chinook smolts, there is a significant difference in downstream survival between early outmigrants (sampled and PIT-tagged before the first hatchery-origin smolts appeared in the sample) and late outmigrants (captured during the hatchery smolt outmigration),
- 3) determine whether or not travel time in the Yakima River differs between natural and hatchery smolts.

2.0 Methodology

The Roza Diversion Dam north of Yakima, Washington (Figure 1) withdraws water from the upper Yakima River for irrigation and hydroelectric power. Rotary drum screens and a bypass system return entrained fish to the Yakima River and provide an opportunity to sample and mark fish before they reenter the river. We queried the PTAGIS database (https://www.ptagis.org/) in February 2023 to retrieve available PIT-tag detection information for all Spring Chinook salmon smolts (hatchery- and natural-origin) released at Roza Dam from 2015 through 2022 (Roza bypass; Fig. 1).

A total of 4769 hatchery-origin smolts and 342 natural-origin smolts with passive integrated transponder (PIT) tags were released from March 10 through May 6th, 2022 into the Roza bypass system, which was about one week later than in the previous year (2021). Hatchery-origin juveniles were acclimated at three sites upstream of Roza Dam: Jack Creek in the Teanaway River system, and Easton and Clark Flat on the Yakima River (Figure 1). Natural-origin and hatchery-origin smolts captured in the Roza bypass were PIT-tagged if not among the 40,000 (about 6% of the total hatchery release) tagged earlier at the hatchery. Previously-tagged hatchery Spring Chinook were noted as recaptures and included in the Roza release group.

Travel times and survival estimates of PIT-tagged hatchery-origin smolts were compared with those of PIT-tagged natural-origin smolts from the point of release into the Roza Dam bypass to the juvenile detection facilities at McNary Dam. Natural-origin smolts were identified as "early" for those sampled and PIT-tagged before the first hatchery-origin smolts appeared in the sample after their mid-March volitional release from acclimation sites. Natural-origin smolts captured during the hatchery smolt outmigration were assigned to the "late" group. In each release year, survival-estimate comparisons were made between late and early migrating natural smolts, and travel time was measured as the difference between the release date at the Roza bypass and recovery/detection date at the downstream detection facilities at McNary Dam.

Although the survival rate from Roza Dam to McNary Dam in each year from 1999¹ through 2018 was estimated using weighted logistic regression (see Neeley, 2018), the survival rates for both groups (natural- and hatchery-origin smolts) for the last 8 years (2015-2022) were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model (see, White and Burnham

YKFP Project Year 2022 M&E Annual Report, Appendix D, Sp. Chin. Smolt Survival

¹ The first outmigration year of Upper Yakima River hatchery-reared Spring Chinook

1999; Lebreton et al. 1992; Williams et al. 2002; Conner et al. 2015), in accordance with Federal Columbia River Power System (FCRPS) methodology (Tuomikoski 2012). The CJS model uses multiple detections of individual marked fish at several dams equipped with PIT-tag detection capabilities. The assumption of the CJS model is that there is no immigration or emigration during capture and recapture intervals, which is valid in the Columbia Basin hydrosystem (where smolts must pass several hydroelectric dams to reach the ocean) because fish behavior is relatively consistent (all fish are moving in one direction and over a relatively short period; (Conner et al. 2015).

The CJS model was run for different groups by year based on an encounter history constructed from the number of fish released at Roza Dam and subsequent detection events at McNary and below McNary Dam (John Day and Bonneville dams). Similar to previous studies (Neeley 2018), all smolt releases were also grouped into seven-day periods for analyses. For example, smolts released during ordinal days 1-7 and 8-14 were treated as two distinct release groups based on Julian/ordinal period. The estimated survival rates were compared among release groups where the sample sizes were sufficient to provide statistical confidence.

Several environmental factors are known to influence downstream smolt survival, and river flow is among the most impactful (Raymond 1968; Connor et al. 2003; Tiffan et al. 2009). We introduced flow rate as a covariate in the CJS model to study its effects. Bureau of Reclamation (BOR) flow data were accessed at:

https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html. The average travel time from Roza Dam to McNary Dam averaged about 20 days (combining hatchery-origin and natural-origin smolts) so each day's release was assigned the 20-day average river flow commencing on the day of release. For example, a fish released on April 1st would reach McNary Dam by about April 20th, and the 20-day average flow rate for that time period would be assigned for that fish to determine the effect of river flow on survival.

Several CJS candidate models were built and compared using every possible combination of variables with river flow. Examples of candidate models included (1) two types of temporal variation in survival probability: time variation, which assumed that survival probability (ψ) varies by year; and no time variation which assumed that ψ is not related to year of release; (2) two types of temporal variation in detection probability: time variation, which assumed that detection is not

related to year of release; (3) variation in survival and detection probabilities between natural and hatchery origin, and (4) influence of river flow on the survival and detection probabilities. Altogether, 49 models were built using these combinations. To determine the rank of the different models, we used the difference in QAICc score relative to the top model. For models with the difference of QAICc (QAICc) <2, we selected the model with the lowest QAICs and fewest parameters as the best model (Burnham and Anderson 2002). We tested the Goodness of Fit (GOF) of competing models using the Bootstrapping Goodness of Fit Approach ("Bootstrap GOF") in program MARK (Cooch and White 2012) to estimate the variance inflation factor for the model constructed to have the most parameters while remaining biologically meaningful (hereafter referred to as the "global model"). All subsequent models were then corrected for over-dispersion using c-hat (ĉ). Using the best selected model, we estimated the effect of river flow on downstream survival rate (Roza Dam to McNary Dam) for both groups (hatchery- and natural-origin smolts). The CJS models and program MARK (White and Burnham 1999) were run within the RMark package (Laake and Rexstad 2019) in R statistical software, version 3.3.6 (R Core Team 2019).

Figure 1. The Yakima River Basin showing the three acclimation sites and Roza Dam where natural- and hatchery-origin Spring Chinook smolts were captured, PIT-tagged and released. Adapted from Fast et al. (2015).

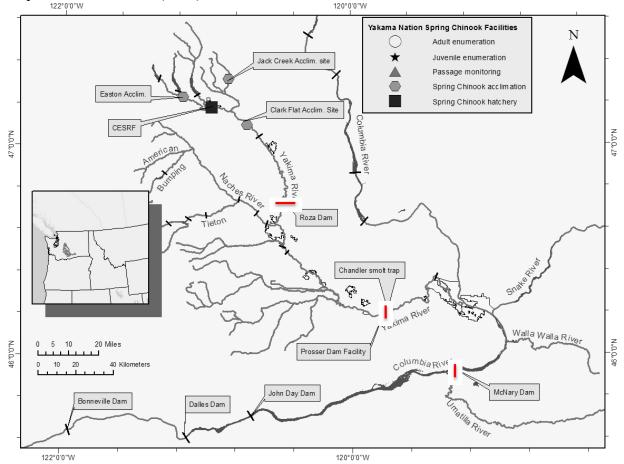


Table 1: Total number of smolts released at Roza Dam with PIT tags (hatchery-origin and natural-origin) by seven-day period (date or group by Julian period) for the 2015 -2022.

natural off	Julian		Ha		-Origin				y Jul	p				smolt		se	
Date	period	2015	2016	2017	2018	2019	2020	2021	2022	2015	2016	2017	2018	2019	2020	2021	2022
5-11 Feb	42	0	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0
12-18 Feb	49	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0
19-25 Feb	56	0	0	0	0	0	0	0	0	107	0	0	0	0	0	0	0
26 Feb-4 Ma	63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5-11 Mar	70	264	0	0	0	0	0	0	0	143	0	0	0	0	0	516	0
12-18 Mar	77	0	0	0	0	0	0	286	1091	29	97	0	110	0	73	276	284
19-25 Mar	84	265	177	431	714	0	388	558	1069	31	32	48	159	0	16	43	9
26 Mar-1 Ap	91	86	167	286	547	0	825	234	879	26	3	58	47	0	35	292	0
2-8 April	98	417	198	294	305	508	469	404	378	84	4	31	30	19	72	55	25
9-15 April	105	70	100	0	579	739	136	578	243	24	0	0	5	52	37	70	0
16-22 April	112	0	160	252	359	373	308	178	75	0	0	21	29	6	18	7	0
23-29 April	119	211	171	275	74	388	191	0	495	6	0	12	2	211	2		17
30 Apr-6 Ma	126	119	84	245	0	128	69	0	491	15	0	11	0	0	0		6
7-13 May	133	0	47	0	0	102	0	0	0	0	0	0	0	4	0		0
14-20 May	140	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
21-27 May	147	0	0	0	0	0	0	0	0	0	0	0	0	0			0
	Total	1432	1104	1783	2578	2238	2386	2238	4769	524	136	181	382	292	253	1259	342

Note: All smolt releases were also grouped into seven-day periods: i.e., smolts released between Julian dates 1 and 7 were treated as one release period (Group 1), those released between Julian dates 42 and 48 were treated as another release group (Group 42).

3.0 Results and Discussion

3.1 Fish size

During the last six years (2015-2022), fish with PIT tags were released for this study from as early as February to as late as May into the Roza bypass system. In 2022, 4769 hatchery-origin smolts and 342 natural-origin smolts were captured and released with PIT tags. The fork lengths of the released hatchery-origin smolts that were PIT-tagged at the dam ranged from 81 mm to 154 mm (average 116.8mm). Hatchery fish were significantly larger than PIT-tagged natural-origin fish ($F_{1,20}=70.86$, p<0.01), which ranged in fork length from 73 mm to 136 mm (average 100.5 mm; table 2).

Table 2. Annual number of smolts released (N), mean, median, standard error (se) around each mean, minimum, and maximum fork length values by origin and release year (Year).

Year		ŀ	Hatchery-Or	igin					Natural-Ori	gin		
	N	Mean	Median	se	Min	Max	N	Mean	Median	se	Min	Max
2015	1432	117.9	118.0	0.31	77	158	524	100.4	100.0	0.48	68	143
2016	1104	121.8	122.0	0.32	86	158	136	98.2	98.0	0.77	78	138
2017	1783	115.8	116.0	0.24	84	149	181	100.1	100.0	0.78	78	142
2018	2578	117.9	118.0	0.19	85	165	381	101.8	102.0	0.51	24	153
2019	2237	121.2	121.0	0.22	88	187	292	117.6	118.5	0.74	77	147
2020	2382	121.4	121.0	0.21	82	169	250	105.0	104.0	0.66	82	135
2021	2382	119.2	119.0	0.21	87	167	250	105.0	104.0	0.33	73	145
2022	4721	116.8	116.0	0.14	81	154	341	100.5	100.0	0.52	73	136

3.2 Yakima River flow and water temperature below Prosser Dam

The annual average of Yakima River flow below Prosser Dam based on monthly averages (gaging station YRPW, which represents the 18-kilometer reach between Prosser Dam and the Chandler Power Plant outfall) for 2022 was approx. 2704 cubic feet per second (cfs), which was higher than the average flow of the previous three years (Table 3). Furthermore, the average flow from March through August was also higher in 2022 (compared to 2019, 2020 and 2021) but third-highest over the 8-year period beginning in 2015.

Table 3. Average monthly flow (cfs) of the Yakama River at the YRPW gage below Prosser Dam for the years 2015-2022.

						Month	s						Monthly	Spring & summer
	1	2	3	4	5	6	7	8	9	10	11	12	Average	(March-Aug) Average
2015	4793	4420	2523	1043	895	420	387	526	581	892	3549	5237	2106	966
2016	2632	8603	7982	8600	3437	983	822	519	517	2086	2582	1920	3390	3724
2017	1696	3460	9492	8778	6959	2697	640	666	657	1463	3585	2434	3544	4872
2018	3038	4138	2632	5183	6183	994	574	604	542	1054	1489	1775	2351	2695
2019	1389	1536	3066	4444	1860	563	560	749	568	1041	1458	2122	1613	1874
2020	3145	4411	1470	2050	2107	1241	577	584	693	1407	2195	2120	1833	1338
2021	2425	2113	1933	3103	2887	1642	619	674	661	974	3264	1953	1854	1810
2022	2385	2108	4490	3039	5582	7871	830	695	619	830	1561	2433	2704	3751

Water temperature

Maximum water temperate during the spring chinook outmigration period (March-August) varied among years. In general, the highest water temperature was in July and August, however nearly all spring chinook smolts leave the Yakima River by the end of June. Monthly average river temperatures were lower in 2022 than in any year since 2015 in all months except July and August (Table 4).

Table 4. Average monthly maximum water temperature (degree Celsius) for the month of spring chinook outmigration period (March-August) for each year from 2015-2022. "NA" represent the data was not available.

Year	March	April	May	June	July	August
2015	10.42	14.24	19.58	24.37	25.12	22.75
2016	9.51	13.66	17.45	22.19	24.46	23.27
2017	9.03	11.20	15.79	20.30	26.81	25.04
2018	9.72	13.40	17.51	23.27	26.94	24.55
2019	8.88	13.32	16.72	NA	NA	NA
2020	5.48	10.38	13.65	17.62	21.27	20.74
2021	6.02	9.66	12.85	17.02	19.51	17.71
2022	5.36	7.76	10.50	12.74	20.87	21.45

3.3. Travel Time from the release site (Roza Dam) to McNary Dam

Travel time for smolts from the release site (Roza Dam) to McNary Dam during the 2022 migration year varied between hatchery- and natural-origin smolts. Most of the smolts were released in April/May, which is a typical peak outmigration period. As a result, most of the fish generally exhibited immediate outmigration behavior after release. Travel time from Roza Dam to McNary Dam for hatchery-origin smolts ranged from 8 to 58 days (mean \pm SE 28.24 \pm 1.65 days, see table 5); whereas the travel time for natural-origin smolts ranged from 42 to 47 days (43.6 \pm 0.9 days).

Since the hatchery-origin smolts were larger than natural-origin smolts (Table 2), size might have played a role in the travel time difference between the hatchery and natural groups. The hatchery smolts took less time to reach McNary Dam than the natural-origin smolts. Previous results have shown that travel time varied among years and the variation might have been related to the variation in river flow among years. In general, the travel time between Roza and McNary dams decreased as river flow increased.

Table 5. The number of fish (PIT tags) detected at McNary Dam ("N"), mean travel days from the release location to McNary Dam ("Mean"), its standard error ("se"), and minimum and maximum travel days (range) for both hatchery-Origin and Natural-Origin Spring Chinook smolts by year from 2015-2022.

		Hatchery-	-Origin			Natural -	Origin	
Release Year	Total # fish (N)	Mean	se	range	Total # fish (N)	Mean	se	range
2015	70	30.33	1.33	9-53	44	41.41	2.02	16-76
2016	132	13.53	0.83	3-45	12	41.00	3.06	24-62
2017	85	19.73	1.12	4-53	3	11.00	3.06	7-17
2018	108	24.81	0.88	5-43	17	36.81	2.90	20-60
2019	95	18.13	0.88	4-40	14	19.00	2.49	9-37
2020	43	21.07	1.18	6-50	4	17.92	2.95	10-23
2021	40	29.56	1.17	8-57	17	40.77	3.5	8-69
2022	54	28.24	1.65	8-58	5	43.6	0.9	42-47

3.4. Detection and Survival rate of hatchery- and natural-origin smolts

1. Detection percentage

A total of 1.6% (76 out of 4769 hatchery origin) and 1.5% (5 out of 342. Natural-origin) tagged fish were detected at McNary Dam (table 6). Both groups have similar percentages of PIT tags detection but detection rates vary with date of passage. Variation in the percentage of the fish detection can be associated with many factors including dam operation. In recent years, increasing spill and the use of surface-passage structures (spillway weirs) at dams are a primary management strategy to increase survival of juvenile fish passing dams within the Federal Columbia River Power System. Greater use of spillways results in a lower proportion of fish entering juvenile bypass systems where PIT tags can be detected (Widener et al. 2018), and fluctuations in spill and flow can produce variable detection rates among years or within a migration season.

Table 6: Number of fish PIT-tagged and released at Roza Dam (N), number detected at McNary Dam (Ndet), and Ndet as a percentage of N (%), by origin and year.

	Hate	chery-C	rigin		Natur	al-Origin
Year	N	Ndet	%	N	Ndet	%
2015	1432	70	4.89	524	44	8.40
2016	1104	132	11.96	136	12	8.82
2017	1783	85	4.77	181	3	1.66
2018	2578	108	4.19	381	17	4.46
2019	2237	95	4.25	292	14	4.79
2020	2382	43	1.81	253	4	1.58
2021	2238	47	2.10	1259	26	2.07
2022	4721	76	1.60	341	5	1.50

2. Survival rate

Based on the CJS model, the average survival probability from Roza Dam to McNary Dam for the combined populations of hatchery- and natural-origin smolts released at Roza Dam during 2022 was $28.0\% \pm 13.20\%$ (mean \pm SE). However, the hatchery-origin survival rate was higher at $33.2\% \pm 18.4\%$ compared to the natural-origin smolts' rate of $12.0\% \pm 10.0\%$ (see table 7).

When examining the early and late migrating groups of natural-origin smolts, the survival rate to McNary Dam for the early migrating group $(20.0\% \pm 10.0\%)$ was higher than that of the later migrating group $(3.5\% \pm NA)$, table 8). However, pooling the data for the last 8 years showed a higher survival rate for the late migration group compared to the early migrating group, although it was not statistically significant $(F_{1,40} = 1.15, p = 0.29)$, see figure 2).

Within the late migration period (table 8), the natural-origin smolts' survival rate to McNary Dam $(3.5\% \pm \text{NA})$ was lower than that of the hatchery-origin smolts $(25.8\% \pm 14.0\%)$. However, when comparing the mean survival rates of the late migrating group over all previous years of analysis (1999-2022), the survival rate was higher for the natural-origin fish $(F_{1,40} = 1.65, p = 0.20)$ than the hatchery-origin (figure 2), but it was not statistically significant.

Table 7. Released and detected populations at McNary and Bonneville or John Day dams and Roza-to-McNary survival rate for all (pooled hatchery- and natural-origin), hatchery-origin, and natural-origin smolts for the years 2015-2022. Note: there were 4 detection-history combinations and each group (Detection histories) is represented by the release-detection sequence and the number of fish detected in that sequence. "1-0-0" corresponds to release at Roza dam (1) but no detections at McNary (0) or Bonneville (0) dams. Similarly, "1-0-1" represents the number of fish released at Roza dam (1), not detected at McNary (0), but detected at Bonneville or John Day. The remaining two sequences for each year represent detection only at McNary, and detection at both McNary and either Bonneville or John Day).

		Nu	mber of PitTags by	Type
	Detection	All	Hatchery-origin	Natural-origin
Year	histories	(H+W)	(H)	(W)
	1-0-0	4915	4586	329
2022	1-0-1	66	59	7
	1-1-0	77	73	4
	1-1-1	4	3	1
	Survival rate	0.280 ± 0.132	0.332 ± 0.184	0.12 ± 0.10
	1-0-0	3377	2167	1210
	1-0-1	51	27	24
2021	1-1-0	65	42	23
	1-1-1	4	2	2
	Survival rate	0.271 ± 0.12	0.285 ± 0.190	0.258 ± 0.168
	1-0-0	2484	2249	235
	1-0-1	111	97	14
2020	1-1-0	40	37	3
	1-1-1	4	3	1
	Survival rate	0.479 ± 0.22	0.558 ± 0.30	0.237 ± 0.20

	1-0-0	2084	1840	244
	1-0-1	343	309	34
2019	1-1-0	75	67	8
	1-1-1	28	22	6
	Survival rate	0.539 ± 0.084	0.598 ± 0.11	0.319 ± 0.095
	1-0-0	2799	2246	317
	1-0-1	41	228	49
2018	1-1-0	108	76	12
	1-1-1	12	28	4
	Survival rate	0.179 ± 0.043	0.369 ± 0.057	0.554 ± 0.232
	1-0-0	1663	1510	153
	1-0-1	217	192	25
2017	1-1-0	65	64	1
	1-1-1	19	17	2
	Survival rate	0.531 ± 0.103	0.558 ± 0.12	0.224 ± 0.093
	1-0-0	924	821	103
	1-0-1	177	156	21
2016	1-1-0	95	87	8
	1-1-1	44	40	4
	Survival rate	0.563 ± 0.064	0.563 ± 0.067	0.551±0.211
	1-0-0	1700	1260	440
	1-0-1	144	102	42
2015	1-1-0	88	54	34
	1-1-1	24	16	8
	Survival rate	0.400 ± 0.068	0.360 ± 0.075	0.50 ± 0.147
·	·		·	·

Figure 2. The box plot showing the 23-year average survival probabilities of natural-origin (Natural) and hatchery-origin (Hatchery) Spring Chinook smolts (see Table 8 for the data). Plot A is the comparison of Early and Late migrating natural-origin smolts; and Plot B is the comparison of Late migrting groups between the hatchery and natural-origin smolts.

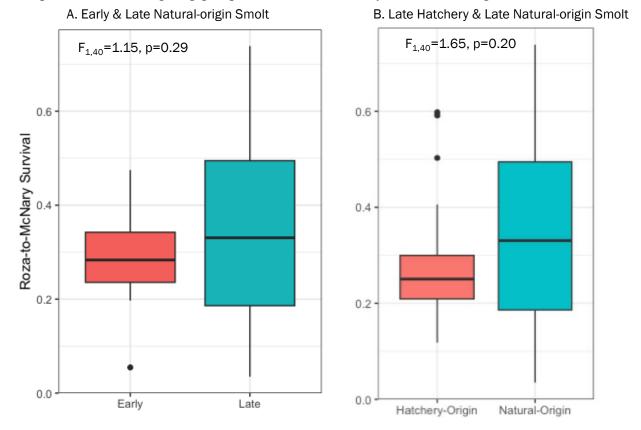
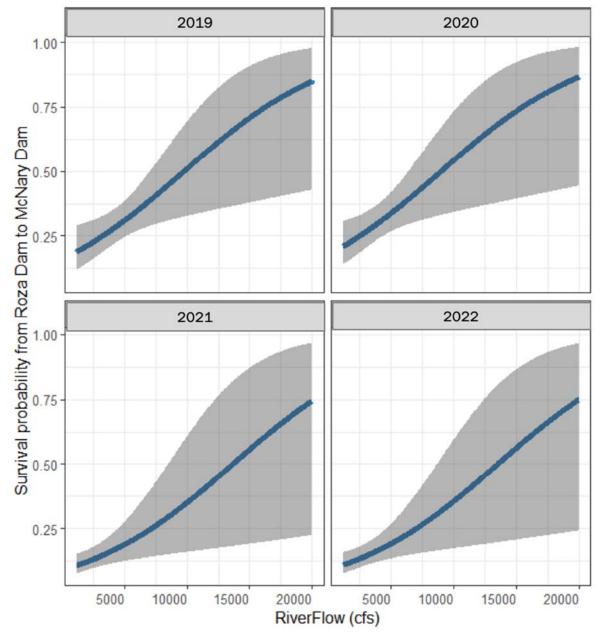



Figure 3. The predicted survival rate as a function of river flow based on the best CJS models ("S(~Year + riverFlow) p(~Year:RearType + riverFlow)"). The shaded area is the standard error of the predicted mean.

3.4. Comparison of Natural- and Hatchery-Origin Smolt Survival from Roza Dam to McNary Dam during the "Late" migration period

Yearly survival estimates based on all contemporaneous late-period smolts are given in Table 9 and Figure 4. Because natural-origin smolts have spent more time in the natural habitat than hatchery-origin smolts by the time both groups pass Roza Dam, it has been hypothesized that, for smolts contemporaneously released at Roza, the survival to McNary

of natural-origin smolts would be greater than that of hatchery-reared smolts even though the hatchery-origin fish tend to be larger. In 2022, the results did not support the hypothesis as survival rate of hatchery-origin smolts was slightly higher than that of natural-origin smolts (Figure 2). However, when comparing mean survival rates over all previous years of analysis (1999-2022), the survival rate was higher for the natural-origin fish ($F_{1,40} = 1.15$, p = 0.29) than the hatchery-origin (Figure 2A).

Table 8. Survival of Spring Chinook smolts from Roza Dam to McNary Dam by origin (Natural/Wild and Hatchery), migration year and migration period, showing the number of PIT-tagged fish at Roza (N), the survival probability ("Surv."), and the standard error of the survival probability (SE; 2020, 2021 and 2022 only) for each group. The "Early" period represents fish which were or recaptured at Roza Dam beofre March 18th, whereas "Late" represents the fish PIT-tagged and released after March 18th.

			Natura	ıl-Origin					Hatch	ery-Origin		
		Early			Late			Early			Late	
Year	N	Surv.	SE	N	Surv.	SE	N	Surv.	SE	N	Surv.	SE
1999				312	0.739					1082	0.591	
2000	3013	0.331		3196	0.498					2999	0.279	
2001	755	0.475		1424	0.133					1744	0.175	
2002	6130	0.216		2588	0.342					1503	0.263	
2003	6614	0.314		1190	0.309					2146	0.246	
2004	3699	0.354		232	0.375					1509	0.204	
2005	1688	0.268		25	0.195					701	0.118	
2006	1833	0.197		500	0.513					3689	0.250	
2007	1072	0.319		336	0.183					2477	0.406	
2008	735	0.283		498	0.396					4911	0.260	
2009	1804	0.430		239	0.484					3931	0.204	
2010	0			105	0.540					1130	0.320	
2011	1040	0.231		904	0.311					3051	0.331	
2012	2482	0.301		191	0.241					4424	0.153	
2013	2435	0.277		38	0.578					550	0.264	
2014												
2015	167	0.363		358	0.420					1503	0.243	
2016	97	0.228		39	0.567					575	0.216	
2017				181	0.111					1869	0.216	
2018	110	0.415		274	0.118					2550	0.214	
2019	0			292	0.319	0.095				2238	0.598	0.10
2020	73	0.14	1.00*	180	0.222	0.183				2386	0.558	0.34
2021	792	0.24	0.12	467	NA	NA	286	0.283	0.25	1952	0.197	0.10
2022	284	0.20	0.1	57	0.035	NA	1091	0.21	0.18	3630	0.258	0.14
Mean		0.297	0.02		0.328	0.035		0.247	0.04		0.283	0.02

Note: estimates for the years 1999- 2018 are from Neeley 2019. NA indicates no precise estimates value due to low detection.

3.5. Comparison of Early and Late migrating Natural-Origin Smolt Survival to McNary Dam

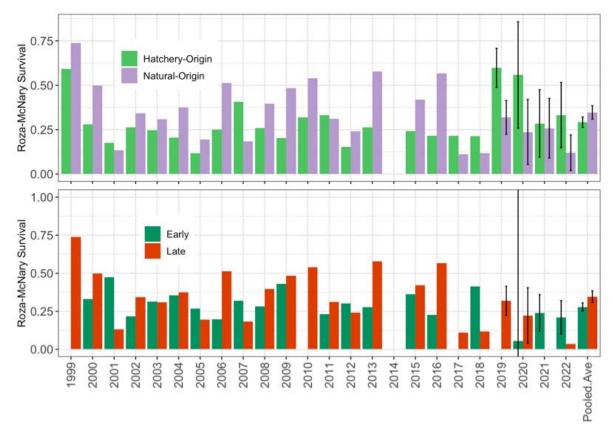

Among the years from 1999 to 2022, natural-origin fish were not released at Roza in certain years, particularly in 1999, 2010, 2014, 2017, and 2019. Similarly, for most years, there was no early release of hatchery-origin smolts from Roza Dam. Most of the fish exiting from the acclimation sites arrived at Roza Dam after March 18th except in 2015, 2021 and 2022. It is also noted that the earliest date of volitional release from the acclimation sites was not the same every year but our delineation of early and late migrating groups was fixed at March 18.

Table 8 and Figure 4B present the natural-origin early and late migrating smolt survivals from Roza to McNary for all years. Averaged over the 20 years with early and late migration, late migrating group had greater Roza-to-McNary survival than early migrating group but the difference was not statistically significant ($F_{1,40}=1.15$, p=0.29, Fig 2).

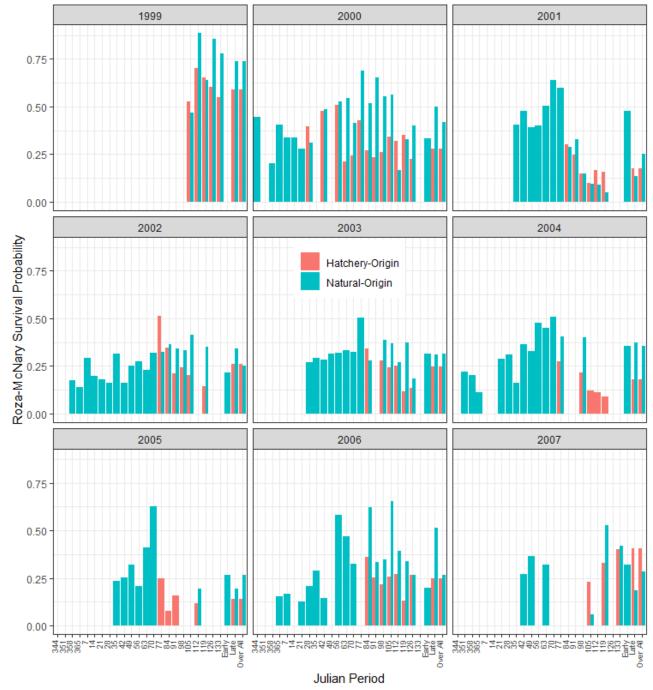
3.6. Weekly survival rate of natural- and hatchery-origin Smolt

The survival rate from Roza Dam to McNary Dam varied by week for both natural- and hatchery-origin groups, but the number of natural-origin releases was not sufficient to estimate the weekly survival rate with statistical confidence. In general, hatchery-origin smolts that were released early [Julian date 77, which was the week of March 12 to 18th, 2022) had a higher survival rate (20.01%±10.0%) than the smolts released during the week between April 6 and 6th, 2022 [Julian date 126] (3.5±NA%, Table 8 and Figure 5).

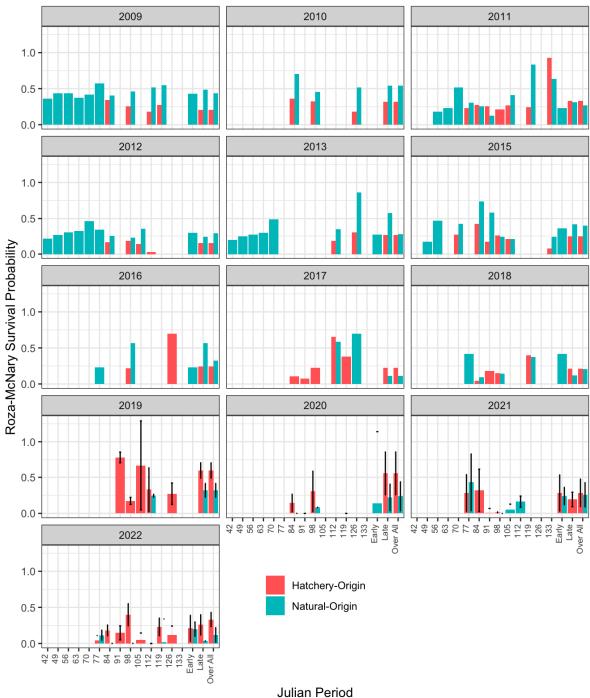
Figure 4. Bar-diagram of Upper-Yakima Spring-Chinook Roza to-McNary survival for late migrating natural- and hatchery-Origin smolts (upper panel) and early and late migrating natural-origin smolts (lower panel) for each release year from 1999 through 2022.

Table 9. Roza-Dam to McNary-Detection Smolt-to-Smolt Survival probability with respect to Julian week. "Sur" and "N" represent survival probability and the number of smolts tagged and released, respectively.

	Param												Julia	an Date												,		
Origin	eter	345	351	359	365	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140	Early	Late	Over All
														1999														
Natural	Sur																			0.47	0.88	0.64	0.85	0.78			0.74	0.74
Ivaturar	N																			34	37	62	34	145			312	312
Hatchery	Sur																			0.53	0.70	0.65	0.60	0.55			0.59	0.59
Trateriery	N																			266	103	306	100	307			1082	1082
														2000														
Natural	Sur	0.44		0.20	0.40	0.34	0.34	0.28	0.31		0.49		0.52	0.54	0.42	0.69	0.52	0.65	0.55	0.56	0.17	0.33	0.40			0.33	0.50	0.42
	N	56		47	55	1575	845	435	243		847		506	723	235	46	248	156	92	17	19	23	41			3013	3196	
	Sur								0.40		0.48		0.51	0.21	0.24	0.43	0.27	0.23	0.26	0.34	0.32	0.35	0.23				0.28	0.28
Hatchery	N								8		20		20	83	152	103	689	547	346	115	365	272	279				2999	2999
										0.40	0.40	0.20	0.40	2001	0.64	0.60	0.20	0.22	0.15	0.00	0.00	0.05				0.45	0.12	0.25
Natural	Sur									0.40	0.48	0.39	0.40	0.50	0.64	0.60	0.29	0.33	0.15	0.09	0.09	0.05				0.47	0.13	0.25
	N									32	121	159	145	144	85	69	85	150	155	583	396	55				755		
TT-4-1	Sur																0.30 132	0.25	0.15	0.10 500	0.17 293	0.16 66						0.18 1744
Hatchery	IN													2002			132	465	288	300	293	00					1/44	1/44
	Sur			0.17	0.14	0.29	0.20	0.18	0.16	0.32	0.16	0.25	0.28	0.23	0.32	0.32	0.36	0.34	0.33	0.41		0.35				0.22	0.34	0.25
Natural	N			500	501	295	761	960	533	178	388	328	804	398	484	617	665	277	750	47		232				6130		8718
	Sur			300	301	275	701	700	333	170	300	320	001	370	101	0.51	0.35	0.21	0.24	0.20		0.14				0150		0.26
Hatchery																89	428	144	444	108		290						1503
														2003														
N 1	Sur								0.27	0.29	0.28	0.31	0.32	0.33	0.33	0.51	0.28		0.39	0.37	0.27	0.37	0.19			0.31	0.31	0.31
Natural	N								515	1188	1600	639	794	1284	256	338	441		284	110	85	115	155			6614	1190	7804
	Sur																0.34		0.28	0.25	0.25	0.12	0.13				0.25	0.25
Hatchery	N																431		574	221	411	332	177				2146	2146
														2004														
Natural	Sur		0.22	0.20	0.11			0.29	0.31	0.16	0.37	0.33	0.48	0.45	0.51	0.41			0.40			0.00				0.35	0.37	0.36
Tutatal	N		184	156	153			301	603	43	889	276	352	398	344	195			19			18				3699	232	3931
	Sur															0.28			0.22	0.12	0.11	0.09					0.18	0.18
Hatchery	N															220			1036	439	220	253					2168	2168


											2005														
N-41	Sur						0.23	0.25	0.32	0.21	0.41	0.63						0.19					0.27	0.19	0.27
Natural	N						831	300	335	110	77	35						25					1688	25	1713
	Sur												0.25	0.08	0.16			0.12						0.14	
Hatchery													205	187	327			701							1420
											2006							,,,,							
	Sur		0.15	0.17	0.13	0.21	0.29	0.14		0.58	0.47	0.32		0.62	0.33	0.35	0.65	0.39	0.34	0.27			0.20	0.51	0.26
Natural	N			551		250	200	125		18	67	56		269	21	32	31	70	41	36			1833	500	2333
	Sur		331	331	213	230	200	123		10	07	30		0.36	0.25	0.22	0.26	0.27	0.13	0.26			1033	0.25	0.25
Hatchery														450	686	827	601	639	356	130					3689
Tracciery	11										2007			430	080	027	001	039	330	130				3009	3009
	C							0.27	0.27								0.06		0.53		0.42	0.52	0.32	0.18	0.20
Natural	Sur										0.32														
	N							453	476		143						233		31		62	10	1072	336	1408
** . 1	Sur																0.23		0.33		0.40	0.56		0.41	0.41
Hatchery	N																622		393		571	891		2477	2477
											2008														
Natural	Sur								0.22		0.33		0.41	0.46	0.28	0.64	0.41	0.11			0.40		0.28	0.40	0.33
	N								332		403		77	48	157	88	77	28			23		735		1233
	Sur												0.27	0.24	0.21	0.18	0.27	0.16			0.40				0.26
Hatchery	N												505	467	879	316	505	1013			1226			4911	4911
											2009														
Natural	Sur							0.36	0.44	0.43	0.37	0.41	0.57	0.40		0.46		0.52	0.55			0.78	0.43	0.48	0.44
Naturar	N							450	321	160	179	379	315	81		39		74	37			8	1804	239	2043
	Sur													0.34		0.25		0.18	0.27			0.13		0.20	0.20
Hatchery	N													413		712		920	448			1438		3931	3931
											2010														
Natural	Sur													0.70		0.45				0.51				0.54	0.54
Naturai	N													33		57				15				105	105
	Sur													0.36		0.32				0.18					0.32
Hatchery														318		707				105					1130
											2011														
	Sur									0.18	0.23	0.52	0.31	0.26	0.13		0.41		0.83		0.64		0.23	0.31	0.27
Natural	N									430	538	72	113	473	126		109		58		25		1040	904	1944
	Sur									130	230	, 2	0.23	0.28	0.26	0.21	0.27		0.25		0.93		1010	0.33	0.33
Hatchery														710	465	63	381		634		340			3114	
Hawnery	IN												J41	/10	403	03	301		054		J+0			2114	J114

					2012														
Natural	Cum	0.22	0.27	0.31	20120.33	0.46	0.35	0.25		0.22	0.36	0.00				0.75	0.30	0.24	0.30
	Sur N	469	650		548		230	106		35	24	0.00				0.75 4	2482	191	2673
	Sur	409	630	363	348	202	230	0.16		0.18	0.14	0.03				0.64	2482	0.15	
TT-4-1																			
Hatchery	N				2012			839		1790	772	900				123		4424	4424
Natural	C	0.20	0.25	0.20	2013	0.40						0.25		0.06			0.20	0.50	0.20
Natural					0.30							0.35		0.86			0.28		0.28
	N	608	436	538	631	222						21		17			2435	38	2473
	Sur											0.18		0.31					0.26
Hatc	N											182		368				550	550
					2014														
Natural	Sur			0.47		0.42		0.74	0.58	0.24	0.21				0.24		0.36	0.42	0.40
	N		60	107		143		60	26	84	24				21		167	358	525
	Sur					0.28		0.43	0.17	0.26	0.21				0.08			0.24	0.24
Hatchery	N					272		271	89	451	73				347			1503	1503
					2016														
Natural	Sur						0.23			0.57							0.23	0.57	0.32
1 tararar	N						97			39							97	39	136
	Sur									0.22				0.70				0.24	0.24
Hatchery	N									575				35				610	610
					2017														
Natural	Sur							0.00	0.00	0.00		0.59	0.00	0.70				0.11	0.11
Ivaturai	N							48	58	31		21	12	11				181	181
	Sur							0.10	0.07	0.23		0.65	0.38	0.00				0.23	0.23
Hatchery	N							449	299	306		271	286	258				1869	1869
					2018														
NT 4 1	Sur						0.41	0.09	0.00	0.14			0.37				0.41	0.12	0.20
Natural	N						110	160	47	31			36				110	274	384
	Sur							0.05	0.18	0.15			0.40					0.21	0.21
Hatchery	N							753	576	317			904						2550
					2019														
	Sur									0.1	NA	0.17	0.34		NA			0.287	0.29
Natural	N																	292	292
	Sur									0.34	0.2	0.71	0.61	NA	0.27			0.301	
Hatchery										508		373			102				2238
Timeliery	- 1				2020					200	, 37	515	200	120	102			2230	
	Sur				2020		0.03	NA	NA	0.083	NA	NA	NA				0.06	0.14	0.14
Natural	N						73	16	35	72	37	18	2				73	180	253
	Sur						13	0.14	NA	0.31	NA	NA	NA	NA			13	0.5	0.5
Hotobor:																			
Hatchery	IN							388	825	469	136	308	191	69				2380	2386


		2021													
Natural	Sur	0.1	6 (0.44	NA	NA	NA	0.05	0.162				0.24	NA	0.26
	N	16	5	276	43	292	55	70	7	0			792	467	1259
	Sur				0.28	0.32	0.004	NA	NA	NA				0.5	0.5
Hatchery	N				286	558	234	404	578	178				1952	1952
		2022													
Natural	Sur		(0.11	0.00	0.00	0.02			0.00			0.20	0.04	0.12
Ivaturai	N			284	9	0	25			21			284	57	384
	Sur				0.24	0.18	0.15	0.39	0.05	0.00	0.23	0.12		0.21	0.28
Hatchery	N				1091	1069	879	378	243	75	495	491		1091	3630

NA*indicates the model failed to converge so that the estimate was not reported.

Figure 5. Roza Dam-to-McNary Dam smolt survival rates by Julian Week grouping. Note: All smolt releases were grouped into seven-day periods: i.e., smolt released between Julian dates 1 and 7 were treated as one release period (Group 1), those released between Julian dates 42 and 48 were treated as (Group 42) For more information about the Julian period, see Table 1).

Figure 5 (continued) Roza Dam-to-McNary Dam smolt survival rates by Julian Week grouping. Note: All smolt releases were grouped into seven-day periods: i.e., smolt released between Julian dates 1 and 7 were treated as one release period (Group 1), those released between Julian dates 42 and 48 were treated as (Group 42) For more information about the Julian period, see Table 1).

4.0 Acknowledgments

We thank all of the crews whose collective fish-tagging efforts over the years made this study possible. We are also grateful to Andrew Matala and David Lind who reviewed and provided valuable comments in the draft report. We would also like to thank Daylen Isaac who provided the hydrological data.

5.0 References

- Bosch, B. 2021. Summary of Data Collected by the Yakama Nation relative to Yakima River Spring Chinook Salmon and the Cle Elum Spring Chinook Supplementation and Research Facility. Appendix B in J. Blodgett, M. Johnston, and B. Bosch (editors) Yakima/Klickitat Fisheries Project Monitoring and Evaluation Yakima Subbasin Annual Report for the performance period May 1, 2021 to April 30, 2021. Bonneville Power Administration, Portland, OR. https://www.cbfish.org/Document.mvc/Viewer/P186823
- Bosch, W.J., Pandit, S.N., (2023). Sandford, B.P. et al. Effects of volitional emigration timing and smolt size on survival and age-at-return in a Pacific salmon hatchery population. Environ Biol Fish 106, 1037–1059 (2023). https://doi.org/10.1007/s10641-023-01395-0
- Buckland ST, Burnham KP, Augustin NH. 1997. Model selection: An integral part of inference. Biometrics. 53:603–618.
- Conner, M. M., S. N. Bennett, W. C. Saunders, and N. Bouwes. 2015. Comparison of tributary survival estimates of steelhead using Cormack-Jolly-Seber and Barker models: Implications for sampling effort and designs. Transactions of the American Fisheries Society, 144:1, 34—47.
- Connor, WP, Steinhorst, RK, and Burge. HL. 2003. Migrational behavior and seaward movement of wild subyearling fall chinook salmon in the Snake River. North American Journal of Fisheries Management 23:414–430.
- Courter I., Garrison T and TJ Kock.2015. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014. https://pubs.er.usgs.gov/publication/70176445
- Duston, J., Saunders, RL, 1995. Increased winter temperature did not affect completion of smolting in Atlantic salmon. Aquac. Int. 3, 196–204.
- Fast, D. E., Bosch, W. J., Johnston, M. V., Strom, C. R., Knudsen, C. M., Fritts, A. L., & May, D. 2015. A synthesis of findings from an integrated hatchery program after three generations of spawning in the natural environment. North American Journal of Aquaculture, 77, 377–395.
- Folmar, CF., and Dickhoff, WW. 1980. The parr-smolt transformation (smoltification) and seawater adaptation in salmonids. Aquaculture 21: 1-37
- Ford MJ. 2002. Selection in captivity during supportive breeding may reduce fitness in the wild. Conservation Biology. 16:815–825.
- Ford, MJ. 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce. Available: http:

- Frankham R, Briscoe DA, Ballou JD. 2002. Introduction to Conservation Genetics. Cambridge
- Gustafson, R. G., Waples, R. S., Myers, J. M., Weitkamp, L. A., Bryant, G. J., Johnson, O. W., & Hard, J. J. 2007. Pacific salmon extinctions: Quantifying lost and remaining diversity. Conservation Biology, 21(4), 1009–1020.
- Gustafson, RG., Waples, RS., Myers, J. M., Weitkamp, LA., Bryant, GJ, Johnson, OW, and Hard, JJ. 2007. Pacific salmon extinctions: quantifying lost and remaining diversity. Conservation Biology 21: 1009–1020.
- Henderson MJ, Iglesias IS, Michel CJ, Ammann AJ, Huff DD. 2018. Estimating spatial-temporal differences in Chinook salmon outmigration survival with habitat and predation related covariates. Can J Fish Aquat Sci. https://doi.org/10.1139/cjfas-2018-0212
- Hoar, W.S. 1976. Smolt transformation: evoluation, behavior, and physiology. J. Fish. Res. Board Can. 33:1234-1252
- Jolly, GM. 1965. 'Explicit Estimates From Capture-Recapture Data With Both Death and ImmigrationStochastic Model.', Biometrika, 52(1), pp. 225–47.
- Kock, T.J., Perry, R.W., and Hansen, A.C., 2016, Survival of juvenile Chinook salmon and coho salmon in the Roza
- Dam fish bypass and in downstream reaches of the Yakima River, Washington, (ver. 1.1, April 2017): U.S. Geological Survey Open-File Report 2016–1210, 32 p., https://doi.org/10.3133/ofr20161210.
- Laake, J. (2013) 'RMark: an R interface for analysis of capture-recapture data with MARK'. Seattle WA: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center.
- Lebreton, JD, Burnham, KP, Clobert, J & Anderson, DR. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies, Ecological Monographs, 62, pp. 67-118.
- Lynch M, O' Hely M. 2001 Captive breeding and the genetic fitness of natural populations. Conservation Genetics.2:363–378.
- McCormick, MI. 2012. Lethal effects of habitat degradation on fishes through changing competitive advantage. Proc. R. Soc. Lond. b 279, 3899–3904.
- McCormick, SD., Björnsson, BTh., Sheridan, M, Eilertson, C., Carey, JB. & O'Dea, M. 1995. Increased daylength stimulates plasma growth hormone and gill Na+,K+-ATPase in Atlantic salmon (Salmo salar). Journal of Comparative Physiology 165, 245–254.
- Melnychuk MC., Welch DW., Walters CJ. 2010 Spatio-temporal migration patterns of Pacific salmon smolts in rivers and coastal marine waters. PLoS ONE. 5:e12916. doi: 10.1371
- Miller KM, Teffer A, Tucker S et al. 2014. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 7:812–855
- Murray, C., Wood, C., 2002. Status of Sakinaw lake Sockeye salmon (Oncorhynchus nerka). Canadian Science Advisory Secretariat. Research document 2002-088.
- NPPC (Northwest Power Planning Council). 1992. Strategy for Salmon. Northwest Power Planning Council, Portland, Oregon.

- Perry, R.W., Pope, A.C., Romine, J.G., Brandes, P.L., Burau, J.R., Blake, A., Ammann, A., & Michel, C. (2018). Flow-mediated effects on travel time, routing, and survival of juvenile Chinook salmon in a spatially complex, tidally forced river delta. Canadian Journal of Fisheries and Aquatic Sciences, 75, 1886-1901.
- Price, MH., Connors, BM., Candy, JR., McIntosh, B., Beacham, TD., Moore, JW., and Reynolds, JD. 2019. Genetics of century-old fish scales reveal population patterns of decline. Conservation Letters.
- Rand, PS., BA. Berejikian, A. Bidlack, D. Bottom, J. Gardner, M. Kaeriyama, R.
 Lincoln, M. Nagata, TN. Pearsons, M. Schmidt, W. W. Smoker, L. A. Weitkamp, and L. A. Zhivotovsky. 2012. Eco-logical interactions between wild and hatchery salmonids and key recommendations for research and management actions in selected regions of the North Pacific. Environmental Biology of Fishes 94:343–358
- Raymond, HL. 1968. Migration rates of yearling chinook salmon in relation to flows and impoundments in the Columbia and Snake Rivers. Transactions of the American Fisheries Society 97(4): 356-359.
- Sykes, GE. and Shrimpton, JM. 2010. Effect of temperature and current manipulation on smolting in Chinook salmon (Oncorhynchus tshawytscha): the relationship between migratory behaviour and physiological development. Canadian Journal of Fisheries and Aquatic Sciences 67, 191–201.
- Tiffan KF, Kock TJ, Haskell CA, Connor WP and Steinhorst RK. 2009. Water velocity, Turbulence, and Migration Rate of Subyearling Fall Chinook Salmon in the Free-Flowing and Impounded Snake River. Trans Am Fish Soc 138:373–384.
- Tuomikoski, J., J. McCann, B. Chockley, H. Schaller, S. Haeseker, J. Fryer, R. Lessard, C. Petrosky, E. Tinus, T. Dalton, and R. Ehlke. 2012. Comparative survival study (CSS) of PIT-tagged spring/summer Chinook and Summer Steelhead 2012 Annual report. (http://www.psmfc.org/wp-content/uploads/2013/08/ComparativeSurvivalStudyofPIT-TaggedChinook.pdf)
- WDFW. 2019. Proposal to increase hatchery production to benefit southern resident killer whales. Washington Department of Fish and Wildlife, Olympia, Washington, USA.
- White, GC., and KP. Burnham. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120—138.
- Zabel RW, Achord S. 2004. Relating size of juveniles to survival within and among populations of Chinook salmon. Ecology 85:795–806
- Zydlevski GB., Stich DS. & McCormick SD. 2014.Photoperiod control of downstream movement of Atlantic salmon Salmo salar smolts. Journal of Fish Biology 85: 1023–1041.

Appendix E Juvenile Coho outmigration survival and adult Coho returns to the Yakima Basin, 1999-2022

Prepared by:
Shubha Pandit, Todd Newsome and Bill Bosch
Yakima-Klickitat Fisheries Project
Yakama Nation Fisheries
P.O. Box 151, Toppenish, WA 98948, USA

July 12, 2023

EXECUTIVE SUMMARY	3			
1. INTRODUCTION	7			
2. METHODOLOGY				
2.1 GEOGRAPHICAL DISTRIBUTION: HISTORICAL AND CURRENT	9			
2.2 PIT TAG DATA	10			
2.3 Data analyses				
2.4 Smolt-to-Adult Returns (SAR)	14			
2.5 AGE COMPOSITION OF ADULT RETURNS	14			
3. RESULTS AND DISCUSSION	15			
3.1 FISH LENGTH AT THE TIME OF TAGGING AND RELEASE	15			
3.2 Travel Time from Release Locations to McNary Dam	16			
3.3 DETECTION RATE OF SMOLT AND PARR RELEASES AT MCNARY DAM	18			
3.5 RECOVERED PIT TAGS ON BIRD ISLANDS	21			
3.6 Survival Probability (Release Site to McNary Dam)	23			
A. Evaluation of survival probability among broodstocks	24			
B. Evaluation of survival probability by release location	25			
B.1 Smolt releases				
B.1.1. Annual evaluation of survival rates for releases from Prosser Hatchery				
B.1.2. Annual evaluation of survival rates for releases from Stiles Pond (Naches River)				
B.2 Parr releases				
B.2.1. Annual comparison of survival rates for parr releases in Yakima Basin streams				
C. Effect of river flow and release month on smolt survival rate				
3.7 SMOLT-TO-ADULT RETURNS (MCNARY JUVENILE TO BONNEVILLE ADULT)				
3.8 ADULT RETURNS				
3.9 Age- distribution at return	3/			
4. ACKNOWLEDGMENT	39			
5. REFERENCES	39			

Executive Summary

Coho salmon (*Oncorhynchus kisutch*) in the Yakima basin were extirpated in the early 1980s but reintroduction efforts initiated in the mid-1980s have resulted in hatchery-produced coho naturally reproducing in both the Yakima and Naches rivers. From zero returns to the Yakima Basin in 1984, the return of Coho (primarily hatchery-origin) exceeded 25,000 adults in 2014. A number of release strategies for outplanting juvenile coho have been evaluated since the reintroduction program began. Outplants have been released at both the parr and smolt life stages from multiple locations at different release dates, and using different broodstock sources to maximize the likelihood of achieving stable and abundant returns of natural-origin Coho salmon to the Yakima River and to enhance the stability and resiliency of the population against potential environmental changes.

A long-term Coho monitoring program aims to refine project objectives and strategies by applying what is learned from experiments, monitoring and evaluation, and literature reviews in an adaptive management framework. This evaluation is an annual update of ongoing monitoring that began in 1996. The report summarizes the estimated survival rate and travel time of juvenile (smolt and parr) Coho salmon releases from multiple locations in the Yakima Basin with a focus on the following objectives:

- Determining survival rate and travel time of smolts released in 2022 and parr released in 2021 (migration year 2022) and quantifying annual trends
- Comparing survival rates between outplants among different broodstock sources (Yakimaorigin vs. imports from Eagle Creek National Fish Hatchery and Washhougal Hatchery stocks)
- Identifying watershed-specific survival rates between the upper Yakima River and Naches
 River release locations for out-migrating juveniles, and identifying whether survival rate
 differs as a function of release month (February, March or April)
- Evaluating the effects of Yakima River flow (using average flow at Prosser Dam for the summer months) on outmigration survival rate
- Evaluating Smolt-Adult return (SAR) percentage for Coho released as parr and as smolts each year for outmigration years 2004-2022
- Comparing the ocean age composition of returns to Bonneville Dam for Coho released as parr versus those released as smolts

For the 2022 migration year, a total of 1,340,197 juveniles (both parr and smolts) were released; which was considerably greater than the migration year 2021 release (897,233). Within that total, approximately 62,000 fish with PIT tags were released. Among these tagged fish, one-third (16,753) were smolts, while two-thirds (45,025) were parr. Smolts were released from four locations in March and April of 2022 (specifically on March 28th and April 7th), while parr were released in June and July of 2021 from 13 locations. Lengths were not measured for any of the migration-year 2022 groups, but in previous years the average fork length of the smolts released was 105.35± 0.89 mm (mean± SE) at the time of tagging.

Travel time to McNary Dam

Smolts from both broodstocks (Yakima and Eagle Creek) were released at Prosser Dam on March 28, 2022, but their travel times to McNary Dam differed significantly. The average travel time for the Eagle Creek stock was 43 days (ranging from 24 to 57 days), while for the Yakima stock, it was 35 days (ranging from 11 to 75 days). This discrepancy in travel time can be attributed to various factors, including size and degree of smoltification at release. Based on the literature, fish size can influence travel times, with larger fish typically taking less time to travel downstream. Although specific length measurements were unavailable, the Yakima brood source fish are generally larger than the Eagle Creek fish due to temperature differences, which may have affected their travel time. Detection of Coho at McNary Dam that had been released as parr occurred on average 326 days after the initial release.

McNary Dam detection rate

The overall PIT tag detection rate for Coho smolts at McNary Dam during the migration year 2022 was $3.41 \pm 0.99\%$ (mean \pm SE). This rate was lower than the detection rate in 2021, which was $4.99 \pm 0.08\%$ (mean \pm SE), and 2020 ($4.31 \pm 0.58\%$), and lower than the detection rate observed in the 2019 migration year ($6.23 \pm 0.9\%$). Over the past seven years, the highest detection rate at McNary Dam was recorded in 2016 at 24.63 \pm 1.51%, while the lowest was in 2022 at 3.41 \pm 0.99%. The detection rates at McNary Dam for Coho parr releases also exhibited variation across different years. The variation in detection rates at McNary Dam could be attributed to factors such as river flow, spill percentage, and the operation of surface-passage structures.

PIT tag recoveries on bird nesting sites

A total of 489 Coho PIT tags were detected at McNary Dam in 2022. Interestingly, a similar number of PIT tags (405) were also recovered at Columbia River bird nesting sites. Among the 405 recovered PIT tags, 250 were recovered on Badger Island.

Release-McNary juvenile survival rate

We estimated survival from release to McNary Dam based on life stage at release, brood source, location, and timing of release. The average survival probability of Coho smolts from release to McNary Dam in 2022 was $14.17 \pm 3.55 \%$, which was lower than the 2021 ($40.34 \pm 6.02 \%$) and 2020 estimates ($47.31 \pm 5.79\%$), but similar to the 2019 estimate ($14.27 \pm 2.64\%$) and higher than the 2015 estimate ($10.12 \pm 1.14\%$).

Fish released at Prosser Hatchery had higher survival compared to releases at other locations, all of them upstream. Comparing broodstocks, the survival probability in 2022 was higher for the Eagle Creek stock (25.37 \pm 11.68%) than the Yakima stock (19.275 \pm 7.13%), but both were significantly lower and in reverse order compared to 2021 (Eagle Creek: 35.27 \pm 8.21%; Yakima: 39.10 \pm 8.80%). When the 7 years from 2015 to 2022 were pooled, the highest survival rate was for Eagle Creek smolts (23.8%), followed by Yakima smolts (18.1%) and the lowest was for Washougal smolts (8.49%).

For coho released as parr in the summer preceding migration year 2022, the survival rate was lower $5.94 \pm 0.8\%$. Parr releases experienced over-winter mortality, migrated later than the smolt releases when river flow was lower and warmer, and traveled a longer distance to McNary Dam.

Smolt-to-Adult Return (SAR) rate

McNary smolt-to-Bonneville adult return rates varied across years and life stages during the study period. On average, the smolt-to-adult return rate (SAR) was slightly higher for the group released as parr (5.83% \pm 0.39%) compared to the SAR for the group released as smolts (5.48% \pm 0.1%). When comparing just the in-basin brood fish released as parr and smolts in upriver tributaries targeted for natural spawning, SARs for the parr releases were 7.89% while SARs for the smolt releases were 5.14%, based on the migration years spanning from 2008 through 2019. Likewise,

within the Naches River basin, SAR for the parr releases stood at 5.05%, while SARs for the smolt releases were recorded at 5.15%.

Adult returns

Since 1997, the average adult Coho escapement into the Yakima Basin has been nearly 4,500 coho per year. The highest recorded return of adults from both hatchery releases and natural production occurred in 2014, with over 25,000 fish counted at Prosser Dam. In 2022, the estimated total adult escapement was approximately 6,708, which just over half the number in 2021 (12,500). The ratio between the number of juvenile outmigrants from Prosser and the subsequent adult returns into the Yakima Basin is approximately 1.2%. This means that out of every 1,000 juveniles that migrate from Prosser, around 12 adults successfully return to that location.

Returning adult age composition

From the outmigration years 2004 through 2022, a total of 4,475 returning Coho with PIT tags that were released as smolts and 1,521 returning Coho that were tagged and released as parr in the Yakima Basin were detected at Bonneville Dam. Among the tagged adults released as smolts, approximately 90% of the returning Coho were age 3 (ocean age 1), while 10% of the returns were age 2 (ocean age 0), and less than 1% were age 4 (ocean age 2). Similarly, for the group released as parr, the age distribution was comparable to the group released as smolts. Approximately 93% of the returning Coho were age 3, 7% were age 2, and less than 1% were age 4.

1. Introduction

Prior to their extirpation in the early 1980's, Yakima Basin Coho salmon (*Oncorhynchus kisutch*) were once widely distributed among tributaries of the Yakima and Naches rivers (Fulton 1970; Chapman 1986), with annual adult returns numbering from 44,000 to 150,000 (Kreeger and McNeil 1993). Releases of hatchery reared Coho salmon in the Yakima Basin began in 1983 with the first release of 324,000 smolts originating from the Little White Salmon Hatchery (YN 1997). In 1988, the Yakama Nation (YN) and the Washington Department of Fish and Wildlife (WDFW) developed and implemented a reintroduction program that has shown evidence of successful natural production in both the Yakima and Naches rivers. The highest return of adults (2014) from hatchery releases and natural production was greater than 25,000 fish.

Several alternative release strategies have been utilized in the reintroduction program over time, informed and tested by long-term monitoring. Smolts were initially released in the mainstem of the Yakima River (Dunnigan et al. 2002), but subsequent releases have explored a range of different release locations to understand how geographically and hydrologically diverse habitats within the Yakima Basin affect outmigration survival and adult returns. Habitat capacity and quality have a significant impact on growth rate and survival, and within the Yakima River Basin human alterations to the environment continue to exacerbate naturally limiting conditions by reducing the quality and quantity of available spawning and rearing habitat. On the other hand, restoration programs are concurrently being implemented to improve habitat conditions in many Yakima Basin streams. Other exploratory release strategies have included variable life stages (parr vs. smolts) at release, different release times, and use of multiple brood sources. In past years, the primary sources of Coho outplants have been Yakima Basin returns, Eagle Creek National Fish Hatchery and WDFW's Washhougal Hatchery. In total, about 500,000 juvenile coho have been released each year from permanent acclimation sites on the Yakima and Naches rivers, and from temporary mobile acclimation facilities operated in tributary streams of the Naches and upper Yakima rivers.

Columbia River Coho typically spend one year in freshwater before out-migrating as yearling smolts (typically in April and May), then spend two growing seasons (about 18 months) in the ocean before returning as 3-year-old adults to spawn in their natal streams (Hassler 1987, Beamish et al. 2004). Precocious, sexually mature males (jacks) may also return to spawn after a summer in the ocean. Adult Coho generally migrate upstream at water temperature ranging from 7.2°C to 15.6°C

(Reiser and Bjornn 1979 cited in Laufle et al. 1986) and spawn from late October to November, sometimes as late as December or January.

Spawning normally occurs in transitions from pools or runs to riffles, in minimum water depth of 0.18 m, at water temperatures ranging from 4.4°C to 9.4°C, and velocities ranging from 0.3 to 0.91 m/sec (Thompson 1972, BOR 2007). The optimum temperature for coho salmon egg incubation was 4°C to 11°C (Davidson and Hutchinson 1938, cited in Sandercock 1991). Juvenile coho salmon survive best in low-gradient habitats, typically tributaries having a stream gradient less than 3% with complex and deep pools or beaver ponds (Jones and Moore 1999, Bradford et al. 1997 and Reeves et al. 1989).

A long-term program is being conducted with the aim of monitoring progress towards project objectives and improving strategies by applying what is learned from the project experiments, monitoring and evaluation, and literature reviews, following the Yakima-Klickitat Fisheries Project adaptive management policy. This report is an annual update of an ongoing monitoring effort that began in 2001. It summarizes survival and return rates and downstream travel time estimates for Coho parr and smolts released from multiple locations in the Yakima Basin, with a focus on the following objectives:

- ❖ Estimating survival rate and travel time of smolts released in 2022 and parr released in 2021(migration year 2022)
- Comparing survival rates among different broodstock sources: Yakima returns and imported stocks from Eagle Creek National Fish Hatchery and Washougal Hatchery (Washington Department of Fish and Wildlife)
- Identifying watershed-specific survival rates among release locations and release months (February, March, April)
- Evaluating the effects of river flow on outmigration survival rate
- Determining the annual Smolt-Adult return rate (SAR) from 2004-2022 and age compositions of adult returns


2. Methodology

2.1 Geographical distribution: historical and current

Coho were widely distributed in lower-gradient tributaries of the Yakima and Naches rivers prior to passage impediments and habitat destruction caused by irrigation withdrawals, channel modifications and floodplain development (Wydoski and Whitney 2003; Tuck 1995; Haring 2001; Berg and Fast 2001; Figure 1A). As passage and habitat restoration projects enable coho to recolonize these habitats, acclimation and release sites developed in the reintroduction program overlap this historical geographical distribution (Figure 1B).

Figure 1. Historical Coho geographical distribution.

2.2 PIT tag Data

We accessed the PTAGIS database (https://www.ptagis.org/) in March 2023 to gather PIT-tag detection information for all Coho Salmon smolts released at various locations within the Yakima Basin from 2015 to 2022 (Figure 1B). For migration year 2022, a total of 1,340,197 juveniles, including both parr and smolts, were released, a higher number compared to migration year 2021 (897,233). Within that total, approximately 62,000 fish with PIT tags were released (Table 1). Among these tagged fish, one-third (16,753) were released as smolts, while two-thirds (45,025) were released the prior calendar year as parr (Tables 1 & 2).

Table 1: Broodstock sources, juvenile rearing facilities, release sites and counts of PIT-tagged smolts released in outmigration years from 2015 through 2022.

	Rearing					Releas	e Year			
Broodstock	Facility	Release site	2015	2016	2017	2018	2019	2020	2021	2022
	Eagle Cr.	Easton Pond	3751			4994	5088			
	Hatchery	Holmes Pond	2501				2495			
1. EagleCr										
		Stiles Pond	2498			5008	5011			
		Prosser Hatchery						997/	4406	4670
2. Washougal	Prosser	Prosser hatchery				4254		3374	4400	4070
	Hatchery									
) (D) (At Boat ramps around the MRS								
	MRS	hatchery								5002
	a. Eagle Cr. Hatchery	Easton Pond		5098						
		Holmes Pond		5050	5002					
		Stiles Pond		1253	5007					
		Wenas Cr. above Wenas Lake					814			
		Wenas Cr. below Wenas Lake					819			
		Wenas Lake at Upper Boat Launch					567			
	b. Prosser Hatchery	Ahtanum	6	869	1527		1705	939		
		Prosser Hatchery	1265	2501	2876	2509	2533	2952	5037	5042
3. Yakima (In-		Lost Creek Pond	2506	2502						
basin)		Stiles Pond	2520	2503						
		Buckskin slough				1250				
		*South Fork Cowiche Cr.				1251				
		Mobile Acclimation below Roza dam		2500						
		Mobile Acclimation into Buckin Slgh	1247	2501						
		Mobile Acclimation into Rattlesnake Cr.	1249							
		Mobile Acclimation into Cowiche Cr.	1250							
		Jack creek Acclimation site					1273			2039
		Total	18793	24777	14412	19266	20305	13865	9443	16753

Table 2: Number of smolts and parr with PIT tags, name of release location, broodstock of origin and release date for outmigration year 2022.

Life stage	Rearing hat.	Broodstocks	Session.Message	N	3/10/22	3/28/22	4/7/22	6/17/21	7/16/21	7/17/21
			COHO PARR RELEASED WILLIAMS CREEK MOBILE							
Parr	MRS	Yakima	ACCLIMATION&It SWAUK RELEASE	3031				3031		
Parr	MRS	Yakima	COHO PARR WILLIAMS CREEK MOBILE ACC RELEASE	1541				1541		
Parr	MRS	Yakima	COLEMAN CREEK COHO PAR RELEASE	4070						4070
Parr	MRS	Yakima	YN COHO PAR RELEASED BADGER CREEK	4011						4011
Parr	MRS	Yakima	YN COHO PAR RELEASED IN BIG CREEK	4016						4016
Parr	MRS	Yakima	YN COHO PAR RELEASED IN KEECHELUS/CRYSTAL SPRINGS	4024						4024
Parr	MRS	Yakima	YN COHO PAR RELEASED IN MASTASH CREEK	4034						4034
Parr	MRS	Yakima	YN COHO PAR RELEASED IN NORTH FORTH TEAWAY RIVER	4004						4004
Parr	MRS	Yakima	YN COHO PAR RELEASED IN REECER CREEK	4088					4088	
Parr	MRS	Yakima	YN COHO PAR RELEASED IN UPPER TANEUM CREEK	4040						4040
Parr	MRS	Yakima	YN COHO PAR RELEASED IN WILSON CREEK	4074						4074
Parr	MRS	Yakima	YN COHO PAR RELEASED LOWER TANEUM CREEK	2009					2009	
Parr	MRS	Yakima	YN COHO PAR RELEASED MAINSTEM TEAWAY RIVER	2083						2083
Smolt	Eagle Creek	Eagle Creek	EAGLE CREEK NFH COHO SMOLTS RELEASED AT PROSSER	4670		4670				
Smolt	MRS	Yakima	MRS HATCHERY COHO SMOLTS RELEASED NEAR HATCHERY	5002		5002				
			PROSSER COHO SMOLTS RELEASED AT JACK CREEK MOBILE							
Smolt	Prosser	Yakima	ACCLIMATION SITE	2039			2039			
Smolt	Prosser	Yakima	YN COHO SMOLT RELEASED AT PROSSER	5042		5042				
Total Smolt				16753		14714	2039			
Total Parr	r			45025				4572	6097	34356

2.3 Data analyses

Travel times and survival rates for both parr and smolt releases from each release location to McNary Dam were estimated for each outmigration year from 2015 to 2022. Travel time was calculated as the difference between the release date and the date of detection at McNary Dam. For outmigration years 2007 through 2018, a logistic regression model (Neeley 2012) was employed to estimate the survival probability of the groups. Starting in 2019 and in this report, survival probabilities from release locations to McNary Dam and the detection rates of PIT-tagged Coho smolts at McNary Dam were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model (White and Burnham 1999; Lebreton et al. 1992; Williams et al. 2002; Conner et al. 2015). The CJS model has commonly been used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile anadromous fish species (Tuomikoski et al. 2013). One of the assumptions of the CJS model is the absence of immigration or emigration during the capture (tagging) and recapture (detection) intervals. This assumption holds true in the hydrosystem due to necessary passage at several hydroelectric dams and relatively consistent fish behavior as they move in one direction over a relatively short period of time (Conner et al. 2015). The CJS model was originally developed to calculate time-interval survival of tagged animals by estimating their survival and recapture probabilities through maximum likelihood. In our study, we used individual fish encounter histories to determine the likelihood of a fish surviving and being detected at each tag receiver facility (dams in this study; see Lebreton et al. 1992). The CJS model was applied to all

smolts released at each location, based on an encounter history constructed from the number of fish released at different locations and subsequent detection events at McNary, John Day, and Bonneville dams on the Columbia River. Similar to previous studies (Neeley 2018), we estimated the survival and detection probability for each release group.

Several environmental factors, including river flow, have been identified as influential factors in downstream smolt survival (Raymond 1968; Connor et al. 2003; Tiffan et al. 2009). As early and late release groups are likely to experience different flow regimes in the lower Yakima River, their rates of survival can vary with temporal river conditions. Therefore, it was necessary to incorporate river flow and release month as covariates in the CJS model to estimate the survival rate of the releases. In our model, we utilized eight years of data (2015-2022) to enhance the overall sample size and increase confidence in our estimates. Coho smolts were released from February through April, with multiple releases occurring each year.

Flow data and water temperature for the Yakima River below Prosser Dam (YRPW) and at Kiona WA (KIOW) were accessed from the Bureau of Reclamation website at:

https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html, and water temperature at Kiona WA was accessed from the USGS website at

https://waterdata.usgs.gov/nwis/uv?site_no=12510500. Based on the average travel time from Prosser to McNary Dam of approximately 20 days, a 20-day moving average of river flow data starting with the Prosser release date was assigned to each tag group to determine the effect of river flow on survival rate of the release group.

Several candidate CJS models were built using every possible combination of river flow and release month, with varying or constant survival and detection probabilities at dams in the CJS models. To determine the rank of the different candidate models we used the difference in the QAICc (ΔQAICc: Quasi-likelihood AICc Akaike's information criterion difference) relative to the top model. For models with ΔQAICc <2, we selected the model with the lowest QAIC and fewest parameters as the best model (Burnham and Anderson 2002). Selecting the best model, we estimated the effect of river flow on downstream survival rate for each release group. The CJS models were run within the RMark package (Laake and Rexstad 2019) in R statistical software, version 3.3.6 (R Core Team 2019). More information about the model is available in Pandit et al. (2021).

2.4 Smolt-to-Adult Returns (SAR)

SAR, which is the percentage of smolts that survive and return as an adult to spawn, is a metric that captures most of the cumulative impacts of the hydro-system and ocean conditions on anadromous fish, indicating how sustainable the returns of adults are over time. The SAR was estimated as the percentage of smolts detected at McNary Dam returning as adults to Bonneville Dam using the following equation for each year and release group:

$$\cup_{at\ McN\ \&\ BON}/J_{at\ McN}$$

Where, U_{at MCN & BON} is a total number of PIT tagged fish which were detected at McNary Dam (McN) as a juvenile and also detected at Bonneville Dam (BON) as a returning adult (joint detection). J_{at McN} is the total number of fish detected at McNary Dam as juveniles. Since Coho can spend as many as 3 years in the ocean, we estimated SAR for the populations that out-migrated from 2004 through 2020 for both parr and smolt releases. Nonparametric 95% confidence intervals were computed around the estimated annual overall SARs for each group as described by McCann et al. (2020). The nonparametric bootstrapping approach of Efron and Tibshirani (1993) was used where first, the point estimates were calculated from the sample for each population, and then the data were re-sampled, with replacement, to create 1,000 simulated samples (Berggren et al. 2002, Chapter 4). These 1,000 iterations are used to produce a distribution of annual SARs from which the value in the 50th ranking is the lower limit and value in the 95th ranking is the upper limit of the resulting 95% nonparametric confidence interval.

2.5 Age composition of adult returns

The ocean age of each returning Coho was estimated by subtracting the date of detection at the Bonneville Adult passage from the date of release. Coho smolt and parr releases naturally show different outmigration behavior after release. Coho smolts start to migrate downstream immediately after release, while parr typically outmigrate as yearling smolts in the spring following release in summer or fall. Therefore, for parr release groups, ocean age was estimated as:

- Ocean age of smolt = date of detection of returning adult at Bonneville Dam —release date
- Ocean age of parr= date of detection of returning adult at Bonneville Dam release date-365 Return age composition was estimated as the proportion of each age class of adult return detected at Bonneville Dam for each brood year and life stage at release.

3. Results and Discussion

3.1 Fish length at the time of tagging and release

For migration year 2022, lengths of PIT tagged Coho were not measured. Over 6 prior outmigration years (2015-2020), about 7% of the PIT-tagged releases were measured. The average fork lengths for the groups released in March and April were 122.12 ± 3.54 mm (mean±SE) and 113.29 ± 3.44 mm, respectively (Table 4). Although this was not a significant difference, fish released in March tended to be larger at tagging than fish in the April release groups. This was most likely a hatchery effect, as March releases were largely comprised of fish reared at the Prosser hatchery where water temperatures are higher than at the other hatcheries used to rear Coho juveniles for this study.

Table 4: Smolt fork length by year, release location and release month, with sample size (N). Data are based on the limited number of lengths available from PTAGIS (n= 8605 out of 111,418 total

			Mean			Ra	nge
Year	Location	Month	N	(mm)	se	min	max
2015	Easton	March	431	133.76	0.47	94	166
2015	Holmes	March	377	126.15	0.48	95	157
2015	Stiles	March	585	119.78	0.60	72	168
2016	Easton	April	521	114.49	0.44	63	155
2016	Holmes	April	1074	112.82	0.29	63	144
2016	Stiles	April	558	122.07	0.54	82	160
2016	Prosser	April	303	133.06	0.46	104	155
2016	Ahtanum	March	520	127.28	0.62	75	220
2016	LostCr	April	85	129.96	0.79	110	150
2017	Holmes	March	292	115.83	0.48	85	136
2017	Stiles	April	600	116.08	0.35	88	140
2017	Prosser	March	414	126.72	0.52	91	160
2018	Easton	April	1108	108.56	0.23	83	140
2018	Stiles	April	800	107.40	0.25	83	151
2019	Easton	April	206	100.20	0.62	71	118
2019	Holmes	April	204	101.31	0.75	67	126
2019	Stiles	April	442	100.22	0.52	67	126
2020	Prosser	March	79	105.35	0.89	80	123
2021	NA	NA	NA	NA	NA	NA	NA
2022	NA	NA	NA	NA	NA	NA	NA

3.2 Travel Time from Release Locations to McNary Dam

In 2022, out of all the tagged smolts released, only 71 were detected at McNary Dam. The travel time from Prosser Dam to McNary Dam for the Eagle Creek broodstock release ranged from 24 to 67 days, with an average travel time of around 43 days (Table 5 and Table 6). For the Yakima broodstock release at Prosser, the travel time ranged from 11 to 75 days, with a mean travel time of 35 days. Despite both groups being released from the same location and on the same date, their travel times exhibited variation. This variation could be attributed to factors such as temperature differences or variations in food supply in the rearing hatchery, among others. The larger size of Prosser releases noted in prior years, and likely related to water temperature, may have contributed to faster travel times in outmigration year 2022. Numerous studies have indicated that fish size can influence travel times, with larger fish generally taking less time to migrate downstream.

Coho smolts released from Prosser Dam consistently have the shortest travel time to McNary Dam because Prosser Dam is closer than any other smolt release location to McNary Dam. Smolts released from the Jack Creek acclimation site had the longest travel time, with a mean of 81 days (76-85 days, min-max).

Parr releases took approximately 330 days from the release date to detection at McNary Dam (Table 5 and Table 6). This was not only because they were released at an earlier life stage. In general, outmigration of hatchery parr releases occurs later than outmigration of hatchery smolts.

Table 5. Travel time from release site to McNary Dam for [A] smolt releases, and [B] parr releases.

A. Average travel days from release location to McNary Dam for smolts

	Rearing			Rel	ease Ye	ar/Migr	ation Y	ear		
Broodstock	Facility	Release site	2015	2016	2017	2018	2019	2020	2021	2022
	Eagle Cr.	Easton Pond	56			45	38			
1 FacilaCu	Hatchery	Holmes Pond	54				33			
1. EagleCr		Stiles Pond	52			17	51			
		Prosser Hatchery						33	34	45
2. Washougal	Prosser	Prosser hatchery				52				
	Hatchery									
	MDC	At Boat ramps around the MRS								
	MRS	hatchery								81
	- E1- C-	Easton Pond		35						
	a. Eagle Cr. Hatchery	Holmes Pond		31	65					
	Hatchery	Stiles Pond		34	31					
		Wenas Cr. above Wenas Lake					NA			
		Wenas Cr. below Wenas Lake					NA			
		Wenas Lake at Upper Boat Launch					34			
		Ahtanum	NA	33	31		36	NA		
		Prosser Hatchery	19	19	34	48	21	34	19	34
3. Yakima (In-		Lost Creek Pond	57	42						
basin)	1 D	Stiles Pond	52	36						
	b. Prosser	Buckskin slough				53				
	Hatchery	*South Fork Cowiche Cr.				74				
		Mobile Acclimation below Roza dam		33						
		Mobile Acclimation into Buckin Slgh	27	32						
		Mobile Acclimation into Rattlesnake Cr.	46							
		Mobile Acclimation into Cowiche Cr.	54							
		Jack creek Acclimation site					47			63
		Average Travel Days	46	33	40	48	37	34	26	56

B. Average travel days from release location to McNary Dam for parr

Code lession				Migra	ation Ye	ar		
Sub-basin	Release Location	2015	2016	2018	2019	2020	2021	2022
Lower Yakima	AHTANC - Ahtanum Creek, Yakima River	NA	357	292	209		322*	
	COWICC - Cowiche Creek- Naches Subbasin	NA	298	294	316			
	INOUYE.SIDE.CHANNEL	325						
	Little Naches	NA	290	294	304			
Naches	Little Naches_SF	688						
ivacries	NATCHR - Natches River		285		308			
	Quartz Cr.	664						
	Rattlesnake Cr		291		300			
	TIETNR - Tieton River				297	289	326	
	HundleyPonds_nearNelsonSiding	NA						
	Big cr	320	290		316			333
	Lake.Cle.Elum		528					
	Mercer Cr		290					
	Mercer Cr. Upstream		298					
	Reecer Creek	329		289	311			324
	SWAUKC - Swauk Creek			301	312			363
	WILLIAMS CREEK MOBILE ACCLIMATION&It SWAUK RELEASE							
Upper Yakima	WILLIAMS CREEK MOBILE ACC							360
	COLEMAN CREEK							323
	BADGER CREEK							306
	KEECHELUS/CRYSTAL SPRINGS							333
	MANASTASH CREEK							335
	NORTH FORTH TEANAWAY							335
	UPPER TANEUM CREEK							335
	LOWER TANEUM							332
	Wilson Cr	326	288	288	309			324
	YAKIM2 - Yakima River - above Naches River			290	302			
Average		442	322	293	299	289	324	334

^{*} represents the value that was derived from the Bonneville detection because no single PIT tag was detected at McNary Dam.

3.3 Detection rate of smolt and parr releases at McNary Dam

For the 2022 outmigration year, a limited number of tags were detected at downstream dams, as shown in Table 6 and Table 7. Specifically, out of the 16,753 PIT-tagged smolts, only 81 were detected at McNary Dam. Similarly, out of the 45,025 PIT-tagged fish released as Parr, only 278 were detected at McNary Dam. These figures highlight the relatively low detection rate of tagged individuals at McNary Dam for both smolt and parr groups during the 2022 outmigration.

Based on the CJS model's output, the detection rate for the group released as smolts was 3.41%, while for the group released as parr, it was 10.87% (refer to Table 7). As the travel time varies between the smolt and parr release groups, as well as among different broodstocks (Yakima and Eagle Creek), the detection rate at McNary Dam also exhibits variation. This variation can be

attributed by several factors such as fish orientation at the antenna, river flow, and the operation of surface-passage structures. In recent years, there has been an increase in spill and the utilization of spillway weirs at dams as a primary management strategy to enhance the survival of juvenile fish passing through the Federal Columbia River Power System. However, greater spillway usage results in a lower proportion of fish entering juvenile bypass systems where PIT tags can be detected (Widener et al., 2018). Fluctuations in spill and flow can contribute to variable detection rates among years or within a migration season. During the period from 2016 through 2022, the detection rate at McNary Dam demonstrated year-to-year variation. The highest detection rate was observed in 2016, while the lowest detection rates were recorded in 2021 and 2022 (Tables 6 and 7).

Table 6. Summary of the total number of coho smolts/parr with PIT tags ("N"), detection and travel time for each release group in migration years (2020 and 2022). "Det.Prob%", "Surv. Prob%" and "travel time" are the detection probability at McNary Dam, survival probability from the release location to McNary Dam and the travel time (days) from the release location to McNary Dam, respectively. "PRO", "MCJ", "JDJ" and "BON" are the number of coho (PIT tags) detected at

Prosser, McNary, John Day and Bonneville dams, respectively.

			J / J	Day and Bonnevine da				No	of Fish	detect	on at		McNary Dar	n
Migrati		Life			Release						BON			Travel time
on Year	Stock	Stage	Rearing	Release location	year	Release date	N	PRO	MCJ	JDJ	(B2J+B	Det. Prob.%	Surv.Prob.%	(min-max)
2020	Eagle Crk.	Smolt	Eagle Hat.	Prosser	2020	27-Mar-2020	9974		204	252	855	3.80±0.5	53.79 ± 7.41	33.13(22-58)
2020	Yakima	Smolt	Prosser Hat	Prosser	2020	27-Mar-2020	2952		78	86	156	6.75 ± 1.68	39.10 ±8.80	34.23 (19-63)
2020	Yakima	Smolt	Prosser Hat	Ahtanum Crk. On LaSalle Gr.	2020	18-Feb-2020	939	4				NA	NA	
	Yakima	Smolt	Prosser Hat	Mainstem YR near Holmes	2020	18-Feb-2020	1249	5			1	NA	NA	
	Yakima	Parr	Prosser Hat	Mainstem Naches R near Tieton R	2019	8-Aug-2019	1289	40	2	11	3	0.15±0.19		289 (276-301)
	Yakima		Prosser Hat		2021	5-Apr-2021	5037		138	66	316			19.5 (0-58)
	_	Smolt	Eagle Hat.	Prosser	2021	5-Apr-2021	4594		72	46	328	4.01 ± 1.05	35.27 ±8.21	34.14 (18-60)
	Yakima	Parr		Ahtanum Crk.	2020	16-Jul-2020	996	7			1			322*
	Yakima	Parr		Above Barrier Tucker crk (up. Yakima)	2020	17-Jul-2020	502	19						
	Yakima	Parr		Below Barrier Tucker crk (up. Yakima)	2020	18-Jul-2020	491	18	1		1	100±0	0.02 ± 0.02	326 ()
2021	Yakima	Parr	Prosser Hat	Wapato Irri.Proj.(WIP) Diversion	2020	17-Jul-2020	308							
				WILLIAMS CREEK MOBILE ACCL.&It										
2022	Yakima	Parr	MRS	SWAUK RELEASE	2021	17-Jun-2021	3031	46	45	12	10	15±7.98	9.9±5.12	363 (354-377)
				WILLIAMS CREEK MOBILE ACC										
2022	Yakima	Parr	MRS	RELEASE	2021	17-Jun-2021	1541	20	18	11	13	13.04±7.02	8.96±4.46	361 (354-368)
2022	Yakima	Parr	MRS	COLEMAN CREEK	2021	17-Jul-2021	4070	43	14	7	30	10.26±4.86	3.35±1.37	321 (308-329)
2022	Yakima	Parr	MRS	BADGER CREEK	2021	17-Jul-2021	4011	24	2	2	12	0.05±0.04	30±1.02	307 (305-308)
2022	Yakima	Parr	MRS	BIG CREEK	2021	17-Jul-2021	4016	41	32	11	20	15.62±6.42	5.1±1.96	334 (318-346)
2022	Yakima	Parr	MRS	KEECHELUS/CRYSTAL SPRINGS	2021	17-Jul-2021	4024	49	36	20	20	14.63±5.52	6.11±2.14	333 (321-347)
2022	Yakima	Parr	MRS	MANASTASH CREEK	2021	17-Jul-2021	4034	59	37	10	8	18.75±9.76	4.89±2.46	335 (325-345)
2022	Yakima	Parr	MRS	NORTH FORTH TEANAWAY RIVER	2021	17-Jul-2021	4004	19	15	4	3	16.67±15.21	2.4±2.13	334 (324-339)
2022	Yakima	Parr	MRS	REECER CREEK	2021	16-Jul-2021	4088	66	23	13	54	4.29±2.42	13.13±6.93	318 (297-330)
2022	Yakima	Parr	MRS	UPPER TANEUM CREEK	2021	17-Jul-2021	4040	39	26	16	7	27.27±9.5	2.36±0.76	336 (327-344)
2022	Yakima	Parr	MRS	WILSON CREEK	2021	17-Jul-2021	4074	83	13	19	43	1.49±1.48	21.38±20.4	319 (290-343)
2022	Yakima	Parr	MRS	LOWER TANEUM CREEK	2021	16-Jul-2021	2009	17	15	8	9	29.41±11.05	2.54±0.85	332 (325-346)
2022	Yakima	Parr	MRS	MAINSTEM TEANAWAY RIVER	2021	17-Jul-2021	2083	9	2	3	4	25±15.31	0.58±0.26	336 (335-337)
2022	Yakima	Smolt	Prosser Hat	PROSSER	2022	28-Mar-2022	5042	NA	41	25	114	4.23±1.69	19.25±7.13	35 (11-75)
2022	Yakima	Smolt	MRS	NEAR MRS HATCHERY	2022	28-Mar-2022	5002	140	6	16	45	1.64±1.63	7.32±6.63	81 (76-85)
				JACK CREEK MOBILE ACCLIMATION										()
2022	Yakima	Smolt	Prosser Hat		2022	7-Apr-2022	2039	30	4	10	11	10±6.71	1.96±0.98	58 (30-74)
2022	·akiiia	Silioit	03361 1100	Prosser (EAGLE CREEK NFH COHO	2022	, Apr 2022	2000	30		10		1010.71	1.5010.55	30 (30 / 4)
2022	Fagle Crk	Smol+	Eagle Hat.	•	2022	28-Mar-2022	4670	NΔ	30	28	122	2 52+1 25	25.37±11.68	13 (21-57)
2022	Lagie CIK.	JIIIUIL	Lagie Hat.	SHOTE	2022	20-IVIdI -2UZZ	4070	IVA	30		122	Z.33II.Z3	23.3/III.08	43 (24-37)

Table 7: Detection history (number of juvenile Coho detected/not detected at McNary and John Day/Bonneville dams) and detection rate during outmigration of smolt release groups (A) and parr release groups (B) over migration years 2015-2021. Enumeration of fish fate (Release/detection histories) is coded by detection (1) and no detection (0) such that "1.0.0." = no juvenile detection after release, "1.0.1" = not detected at McNary Dam but detected at John Day Dam or Bonneville Dam, "1.1.0" = detected at McNary Dam but not at John Day Dam or Bonneville Dam, and "1.1.1" = detected at McNary and either John Day or Bonneville.

A. Smolt releases

						Detection Rate		Survival I	Rate (%)
Mig.Year	N	1.0.0	1.0.1	1.1.0	1.1.1	Mean	SE	Mean	SE
2015	18793	18167	392	179	55	12.3	1.51	10.12	1.14
2016	24777	23128	621	825	203	24.63	1.51	16.84	0.90
2017	14412	13601	337	431	43	11.31	1.62	29.06	3.40
2018	19266	18356	483	379	48	9.03	1.24	24.51	3.20
2019	20305	19775	338	168	24	6.23	1.31	14.27	2.64
2020	13865	12364	1219	227	55	4.31	0.58	47.31	5.79
2021	9443	8771	666	159	35	4.99	0.08	40.34	6.02
2022	16753	42337	368	68	13	3.41	0.93	14.17	3.55

B. Parr releases (released parr typically outmigrate as yearling smolts). The year is the migration year. For example, number of fish in 2015 is the number of parr released in 2014.

						Detecti	Detection Rate		val Rate
Mig.Year	N	1.0.0	1.0.1	1.1.0	1.1.1	Mean	SE	Mean	SE
2015	28611	28547	19	41	4	17.39	7.90	0.90	0.39
2016	25815	25473	41	283	18	30.51	5.99	3.82	0.74
2017									
2018	21244	20614	333	260	37	9.23	3.59	13.98	2.05
2019	41275	41175	30	69	1	3.23	3.17	5.26	5.13
2020	2541	2532	4	4	1	25.00	21.65	0.93	0.71
2021	1989	1987	2	0	0	NA	NA	0.02*	115.47
2022	42942	42337	328	237	40	10.87	1.62	5.94	0.8

Note: there was no parr release in 2016 (migration year 2017). NA indicates insufficient detections to estimate detection rate. * indicates the survival rate is not a precise estimate because of very few joint detections among dams.

3.5 Recovered PIT tags on Bird Islands

Figure 4 illustrates 13 bird nesting colonies where recoveries of PIT tags have played a crucial role in revealing the impact of avian predation on the survival of out-migrating juvenile salmonids. For the 2022 coho smolt release, the recovery of 405 PIT tags on avian nesting islands, compared to the detection of 359 PIT tags at McNary Dam, indicates that a significant portion of the total juvenile release in 2022 likely succumbed to avian predation.

Among the islands, the highest number of coho smolts were recaptured from Badger Island, with 250 out of the 405 recovered PIT tags originating from there. It is important to note that Badger Island is classified as an unmanaged island, lacking any structures or measures to reduce bird nesting. In contrast, nearby Crescent Island is categorized as a managed island, where several measures have been implemented to mitigate bird nesting. Only 23 out of the 405 recovered smolt tags were associated with Crescent Island (Table 8). It should be acknowledged that recovered PIT tags represent a fraction of the total predation on tagged smolts because tags can be blown off of the colony's nesting area during wind storms; washed away during high tides in the Columbia River estuary, rain storms, or high water events; otherwise damaged or lost during the course of the nesting season; or simply not detected.

Out of the 405 PIT tags recovered, 294 were from the parr group (0.65% of the total parr release), while 111 were from the smolt group (0.66% of the total smolt release; Table 8). This similarity suggests that both groups had similar exposure to avian predation in the Columbia and lower Yakima rivers despite differences in migration timing.

Figure 4. Schematic of mark–recapture–recovery sites of PIT-tagged Coho released in Yakima Basin for the migration year 2021.

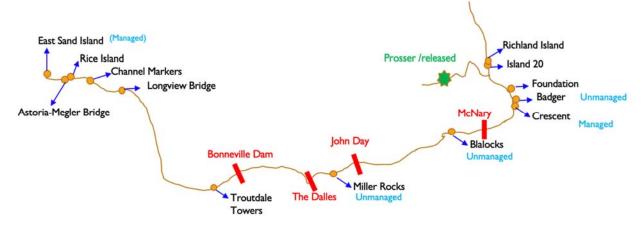
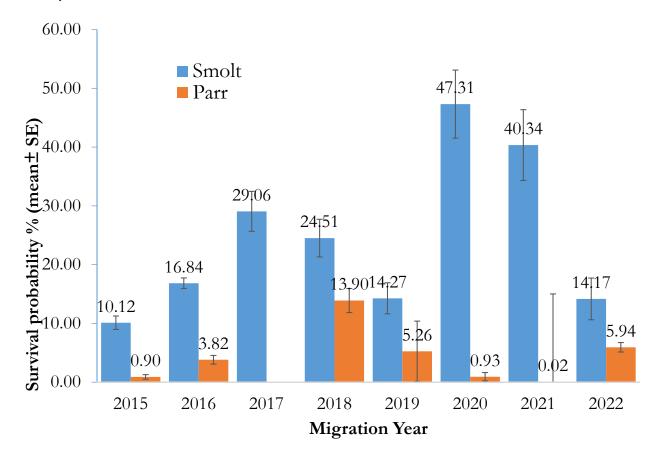


Table 8. The number of recaptured Coho Pit tags (released as smolt or parr for the migration year 2020, 2021 and 2022) on each bird nesting island. Recovery locations include "RICHIS" = Richland Island, "FOUNDI" = Foundation Island, "BADGER" = Badger Island, "CRESIS" = Crescent Island, "CBLAIS" = Central Blalock Island, "MLRSIN", = Miller Sands Island, "LMILS" = Little Miller Island, "ASMEBR" = Astonia-Megler-Bridge, "ESANIS" = East Sand Island, and "POTH" = Potholes Reservoir


			Detec	tion a	at Dam	ıs			Reca	ptur	ed in	Islar	nds (A	VIA	N pre	edati	on)	
Life stage (Parr/Smolt)	Mig. Year	N	MCN	JD	BON	%	RICHIS	FOUNDI	BADGEI	CRESIS	CBLAIS	MLRSNI	LMILIS	ASMEBR	ESANIS .	РОТН	Total	% Recap
Smolt	2020	13865	282	338	1011	2.03	15	39	45	1			12	11	24		147	1.06
	2021	9443	210	112	664	2.22	10	15	50	2			14	13	13		117	1.24
	2022	11711	81	79	292	0.69	4	20	66	3	4	1	7	4	2		111	0.95
Parr	2020	1289	2	1	3	0.16			5								5	0.39
	2021	1897	1	0	2	0.05	1		6								7	0.37
	2022	45025	278	136	233	0.62	8	27	184	20	8		19	14	14		294	0.65

3.6 Survival Probability (Release Site to McNary Dam)

We estimated survival from release to McNary Dam based on life stage at release, brood source, location, and timing of release (Table 7 and Figure 5). The average survival probability of Coho smolts from release to McNary Dam in 2022 was 14.17 ± 3.55 %, which was lower than the 2021 (40.34 ± 6.02 %) and the 2020 estimate (47.31 ± 5.79 %), but similar to the 2019 estimate (14.27 ± 2.64 %) and higher than the 2015 estimate (10.12 ± 1.14 %).

Fish released at Prosser Hatchery had higher survival compared to releases at other locations, all of them upstream. Comparing broodstocks, the survival probability in 2022 was higher for the Eagle Creek stock (25.37 ± 11.68%) than the Yakima stock (19.275 ± 7.13%), but both were significantly lower and in reverse order compared to 2021 (Eagle Creek: 35.27 ± 8.21%; Yakima: 39.10 ± 8.80%;). When the 7 years from 2015 to 2022 were pooled (Figure 6), the highest survival rate was for Eagle Creek smolts (23.8%), followed by Yakima smolts (18.1%) and the lowest was for Washougal smolts (8.49%). Parr releases experienced over-winter mortality, migrated later than the smolt releases when river flow was lower and warmer, and traveled a longer distance to McNary Dam.

Figure 5. Overall smolt survival rate (± SE) from release site to McNary Dam for smolt and parr releases in migration years 2015-2021. The asterisk for 2020 and 2022 indicates that the survival rate of parr is not precise estimates because of a smaller number of joined detection at dams below McNary Dam.

A. Evaluation of survival probability among broodstocks

During the 2022 migration year, the survival rate for Yakima Basin stock releases (25.37 \pm 11.68%) was higher than for Eagle Creek stock releases (19.25 \pm 7.13%), as shown in Table 6. However, the trend was opposite in 2021. It is worth noting that there were no releases of Washougal stock in the Yakima Basin in 2019, 2020, 2021, and 2022. When considering smolt releases from 2015 to 2022, the average survival rate differed among stocks, as depicted in Figure 6. Eagle Creek smolts exhibited the highest survival rate, while Washougal smolts had the lowest.

Initially, our expectation was that smolts from the Yakima stock would exhibit a higher survival rate compared to Eagle Creek imports. This expectation was met in 2021 but not in 2020, 2022, or when considering the 7-year average. The variation in survival rates among hatcheries and years can be attributed to several factors, including water temperature and water quality at the

hatchery. Although fish size data were unavailable in 2021 and 2022, previous studies conducted outside the Yakima Basin have indicated that fish size can impact juvenile survival rates.

Additionally, the timing of outmigration and river flow may have also influenced the survival rates. The migration timing differs between the two groups, which means they might have encountered varying environmental conditions such as river flow or temperature. These environmental factors could contribute to the observed variation in survival rates between the Yakima stock and Eagle Creek imports.

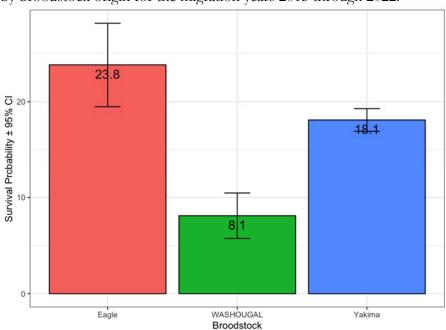


Figure 6. Average Coho smolt survival rate (release to McNary Dam) and 95% confidence intervals by broodstock origin for the migration years 2015 through 2022.

B. Evaluation of survival probability by release location

B.1 Smolt releases

Smolts released directly from Prosser Hatchery on the lower Yakima River had the highest survival among all Yakima River release sites (Table 9). Annual survival rates during 2015-2022 for all sites ranged from a low of 0.88±0.6 % for a 2019 Ahtanum Creek release to a high of 97.8% for the 2018 Prosser release (Table 9, Figure 7). The high survival estimates at Prosser for 2018 may be due to low estimated detection efficiencies for that release group, and the fact that this estimate was also based on a different method (Neeley 2018) than the CJS model. From 2019, we employed CJS

models, which have been commonly used within the FCRPS to estimate survival rates for juvenile anadromous fish species (Tuomikoski et al. 2013). In 2022 the Prosser release smolt group had a $19.25\% \pm 7.13$ survival rate to McNary Dam (Table 9, Figure 5), which was lower than it was for the group released in 2021 (migration year 2021, 42.92 \pm 8.3%).

Table 9. Survival probability from the release location to McNary Dam for Coho smolt releases from 2015 through 2022.

Stock	Release site	2015	2016	2017	2018	2019	2020	2021	2022
	☐ Stiles	8.2	24.7	27.4					
	□ Prosser	37.2	22.9	66.5	97.9	25.2 ± 2.9	41.1 ±10.1	42.92±8.3	19.25 ± 7.13
	□ Easton		13.3						
	□ Buckskin Slough		20.4		24.1				
	☐ South Fk Cowiche Creek				25.3				
Yakima	☐ Ahtanum Creek					0.88 ± 0.6	NA		
	□ Jack Creek					6.01 ±3.5			1.96 ± 0.98
	☐ Wenas Lake above Wenas Dam (Wenas wildlife area)					0.25 ±1.1			
	☐ Wenas Creek below Wenas Dam					NA			
	☐ Wenas Lake at Upper Boat Launch					1.6 ±1.1			
	Near MRS hatchery								7.32 ± 6.63
	□ Stiles				25.5	16.83±6.8			
Earlo Cucole	□ Prosser						52.6 ±7.4	35.3 ±8.1	25.37 ± 11.68
Eagle Creek	□ Easton				9.2	17.2 ±8.0			
	□ Holmes					6.5±4.0			
Washougal	□ Prosser				32.1				

Note: Estimates for the years 2015-2018 were adopted from Neeley (2018). For 2019, 2020 and 2021 results, standard errors are also given (mean \pm SE). "NA" means that survival rate could not be estimated because there were not enough detections at downstream dams.

B.1.1. Annual evaluation of survival rates for releases from Prosser Hatchery

The highest estimated survival rate for a Prosser release was in 2018 but as discussed above, the estimate is likely to be inaccurate, either because of a low detection rate at downstream dams or methodological errors. Ignoring 2018, the highest survival rate was in 2014 (78%) and the lowest was in 2016 (22.9%, Table 10).

Table 10. Survival to McNary Dam for Yakima-origin Coho released as smolts from Prosser Hatchery.

Year	Number released	Release Date	Travel days (Mean ± SE)	Survival Probability (Mean ± SE)
2007	2499	4/15	15	62.7
2008				
2009	2506	4/2	41	65.7
2010	1371	4/4	24	52.5

2011	5036	4/15	30	37.6
2012	3811	3/5	58	33.9
2013	2520	4/15	8	67.2
2014	3004	4/14	18	78.0
2015	1265	3/23	21	37.2
2016	2501	4/4	19	22.9
2017	2876	3/19	34	66.5
2018	2509	3/14	48	97.9
2019	2533	4/2	21.32 ± 8.54	25.19 ± 2.98
2020	2952	3/27	33.78±1.14	39.10 ± 8.80
2021	5037	4/5	19.50 ± 1.4	42.92 ± 8.34
2022	5042	3/28	35 ± 4.9	19.25 ±1.4

Note: Estimates for the years prior to 2019 were obtained from Neeley (2018). Standard errors are available only starting from 2019.

B.1.2. Annual evaluation of survival rates for releases from Stiles Pond (Naches River)

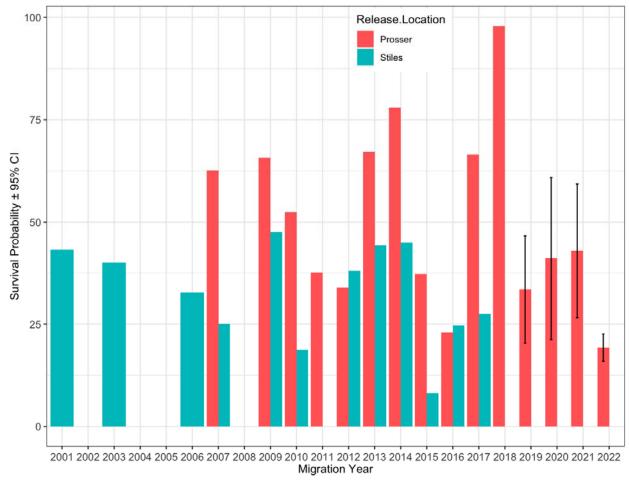

Similar to Prosser, the survival rate to McNary dam of Stiles releases also varied by year. There were no releases of Yakima stock from Stiles Pond after 2017 (Table 11), but as shown in Table 9, there were more years of releases from Stiles Pond than any other site besides Prosser Hatchery. Although the survival rates of Prosser and Stiles releases both varied by year, the Prosser release groups had higher survival rates to McNary Dam in most years than the Stiles groups, as might be expected from Stiles Pond's location about 120 km upstream from Prosser Hatchery. Only in 2012 and 2016 did Stiles releases survive better than Prosser releases (Figure 7).

Table. 11 Survival to McNary Dam for Yakima-origin released from Stiles Pond. No release from this site after 2017

			Travel days	Survival Probability
Year	Number released	Release Date	(Mean ± SE)	$(Mean \pm SE)$
2001	1240	5/17	22	43.2
2002				
2003	1249	5/7	14	40.0
2004				
2005				
2006	2490	4/3	38	32.7
2007	2449	4/5	41	25.0
2008				
2009	2515	4/15	36	47.6
2010	2501	4/12	36	18.7
2011				
2012	2526	4/16	32	38.0
2013	2504	4/15	30	44.2
2014	2505	4/16	25	44.9
2015	2520	3/23	51	08.2
2016	3768	4/7	35	24.7
2017	5007	4/17	31	27.4

Note: Results were adopted from Neeley (2018)

Figure 7. Bar plot showing Coho smolt survival to McNary Dam for the Yakima-origin Coho smolt released at Prosser Dam from 2007 through 2022 (red color) and from Stiles Pond (green color) from 2001 through 2022.

B.2 Parr releases

For the migration year 2022, 45,025 Coho parr with PIT tags were released in 13 different locations (Table 6). The overall survival rate for Coho released as parr in 2021 (outmigration year 2022) from the release site to McNary Dam was only 5.94% (Table 7). However among the release locations, the average survival rate from release to McNary was highest for the group released in Wilson Creek (21.37±30.39%). followed by Reecer Creek and Swauk Creek (Table 12).

Table 12. Survival probability (from the release location to McNary Dam) for Coho parr releases in 2018, 2019, 2020 and 2021 (outmigration years 2019, 2020, 2021 and 2022).

	20	19	2020		2021		2022	
Release Location	Mean (%)	SE (%)	Mean (%)	SE (%)	Mean %	SE	Mean %	SE
Ahtanum Creek	4.71	1.06						
Rattlesnake Creek	15.25	5.07						
Big Creek	0.4	0.15					5.1	1.96
Naches River	4.78	4.42						
Easton Reach	NA							
SF Cowiche Creek	0.4	0.28						
Reecer Creek	2.56	1.1					13.12	6.93
Swauk Creek	0.13	75.5*					9.89	4.46
Tieton River	9.16	8.6	0.93	0.71				
Coleman Creek	4.79	2.92					3.35	1.37
Little Naches	NA							
Wilson Creek	2.14	0.87					21.37	30.39
Yakima River ThorpBoatRamp	NA							
Tucker Crk(above barrier)					NA			
Tucker Crk (below barrier)					0.02	0.02		
NorthFork Teanaway Rv							2.28	0.56
Jack creek mobile accl. Site							1.96	0.97
Badger creek							NA	
Keechelus/Crystal springs							6.11	2.13
Manastash Cr							4.89	2.46
Naches River								
Upper Taneum Cr							2.36	0.76
Lower Taneum Cr							2.54	0.85
Mainstem Teanaway Rv.							0.58	0.26
All (Pooled)	5.26		0.93				5.94	0.8

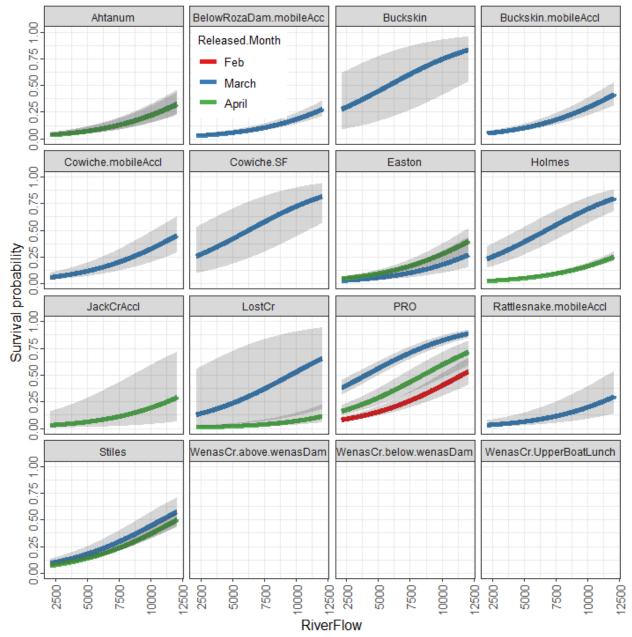
[&]quot;NA" or "*" represents releases with too few downstream detections to estimate survival rate, while "*" flags excessive estimation error.

B.2.1. Annual comparison of survival rates for parr releases in Yakima Basin streams

Table 13 summarizes annual variations in survival rates of Coho parr released from several locations in the Yakima Basin. There was substantial variation among years within a site, and among the sites.

Table 13. Estimated survival from release to McNary Dam of Coho released as parr, by release location and migration year. For 2019, 2020 and 2021 results, average survival rate and its standard errors are also given (mean \pm SE) where applicable. An asterisk indicates that the survival rate could not be computed because of too few downstream detections.

Pributary Year Pop® (N) rate (%) SE Stock Notes	Released		Dolone - J	C1			
2008 3001 30.7 Yakima 2009 6 Wild Parr 2009 3001 23.3 Yakima 2010 3004 16.9 Yakima 2011 3021 19.6 Yakima 2011 3021 19.6 Yakima 2011 3049 20.1 Yakima 2011 3049 20.1 Yakima 2011 3049 20.1 Yakima 2012 South Fork 2013 3003 11.3 Yakima 2014 3014 3.6 Yakima 2015 3017 Yakima 2015 3017 Yakima 2015 3017 Yakima 2016 2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2019 3013 0.40 0.28 Yakima 2019 3013 0.40 0.28 Yakima 2019 3015 23.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 2017 Yakima 2017 Yakima 2018 3059 29.96 Yakima 2016 2017 Yakima 2016 3026 3.26 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 25.56 1.10 Yakima 2010 3005 25.56 1.10 Yakima 2012 2020 No release 2021 No release 2021 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2022 4088 2022 4088 2022 2022 2022 2022 2022 2022 2023 2	river/	Vasa	Released	Survival	СГ	Cto ala	Notes
2009 6	tributary				SE		Notes
2009 3001 23.3 Yakima 2010 3004 16.9 Yakima 2011 3021 19.6 Yakima 2011 28 81.2 Wild Parr 2011 3049 20.1 Yakima 2012 South Fork				30.7			
2010 3004 16.9 Yakima South Fork 2011 3021 19.6 Yakima Yakima 2011 28 81.2 Wild Parr 2011 3049 20.1 Yakima South Fork 2011 3049 20.1 Yakima South Fork 2013 3049 20.1 Yakima South Fork 2013 2495 27.5 Yakima Cowiche Creek 2013 2495 27.5 Yakima Cowiche Cr from Mobile Site 2015 3017 Yakima Cowiche Cr from Mobile Site 2015 3017 Yakima Mobile Site 2016 2017 2018 3035 16.6 Yakima Mobile Site 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2021 No release 2022 No release 2021 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2014 3031 7.46 Yakima 2015 3026 30.52 Yakima 2016 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2020 3000 16.6 Yakima 2020 3072 18.3 Yakima 2016 Yakima 2020 3072 18.3 Yakima 2020 3072 18.3 Yakima 2020 3072 18.3 Yakima 2020 3072 18.3 Yakima 2020 3021 3022 9.6 Yakima 2020 3021 3022 9.6 Yakima 2020 3021 3022 9.6 Yakima 2020 3022 3022 3023 3023 3023 3023 3023 3034 30				22.2			
2011 3021 19.6 Yakima 2011 28 81.2 Wild Parr 2011 3049 20.1 Yakima 2012 South Fork							0 1 1 1
2011 28 81.2 Wild Parr 2011 3049 20.1 Yakima							South Fork
2011 3049 20.1 Yakima South Fork							
Cowiche Creek 2013 3003 11.3 Yakima 2014 3014 3.6 Yakima 2014 3014 3.6 Yakima 2015 3017 Yakima 2016 2016 2017 2018 3035 16.6 Yakima 2020 No release 2021 No release 2011 3004 29.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2016 Yakima 2017 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No re							
Cowiche Creek 2013 2495 27.5 Yakima 2014 3014 3.6 Yakima Cowiche Cr from Cowiche Cr from 2014 1249 25.4 Yakima Cowiche Cr from Mobile Site 2015 3017 Cowiche Cr from Yakima Cowiche Cr from Mobile Site 2016 2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2021 No release 2022 No release 2022 No release 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2014 3031 7.46 Yakima 2015 3026 3052 Yakima 2016 Yakima 2017 Yakima 2016 2017 Yakima 2018 3009 29.96 Yakima 2017 Yakima 2018 3009 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 Yakima 2016 Yakima		2011	3049	20.1		Yakıma	
Correck 2013 2495 27.5 Yakima Creek 2014 3014 3.6 Yakima Cowiche Cr from 2014 1249 25.4 Yakima Mobile Site 2015 3017 Yakima Cowiche Cr from Yakima 2015 1250 15.4 Yakima Mobile Site 2016 2017 2018 3035 16.6 Yakima 2020 No release 2021 No release 2021 No release 2021 No release 2011 3013 27.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2018 3009 29.96 Yakima 2016 Yakima 2017 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011 3022 9.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011 3021 2021 2021 2021 2021 2021 2		2012					South Fork
Creek 2013 2495 27.5 Yakima 2014 3014 3.6 Yakima Cowiche Cr from Mobile Site 2015 3017 Yakima Cowiche Cr from Yakima Mobile Site 2015 3017 Yakima Cowiche Cr from 2015 1250 15.4 Yakima Mobile Site 2016 2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2022 No release 2022 No release 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 2015 3026 3.26 Yakima 2016 2016 Yakima 2016 Yakima 2017 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2019 3072 18.3 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011 3022 9.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakim	Cowicho	2013	3003	11.3		Yakima	
Cowiche Cr from Mobile Site 2014 1249 25.4 Yakima Mobile Site 2015 3017 Yakima Cowiche Cr from Mobile Site 2016 2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2021 No release 2022 Nor elease 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2010 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima		2013	2495	27.5		Yakima	
2014	Cieek	2014	3014	3.6		Yakima	
Cowiche Cr from 2015 1250 15.4 Yakima Mobile Site 2016 2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2022 No release 2010 3015 23.24 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2010 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							Cowiche Cr from
Cowiche Cr from Mobile Site 2016		2014	1249	25.4		Yakima	Mobile Site
Cowiche Cr from Mobile Site 2016		2015	3017			Yakima	
2016 2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2022 No release 2022 No release 2008 3001 37.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							Cowiche Cr from
2017 2018 3035 16.6 Yakima 2019 3013 0.40 0.28 Yakima 2020 No release 2021 No release 2022 No release 2008 3001 37.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2012 3026 30.52 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2016 Yakima 2011 3022 9.6 Yakima 2011 3		2015	1250	15.4		Yakima	Mobile Site
2018 3035 16.6 Yakima		2016					
2018 3035 16.6 Yakima		2017					
2019 3013 0.40 0.28 Yakima			3035	16.6		Yakima	
2020 No release 2021 No release 2022 No release 2008 3001 37.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011 20					0.28		
2021 No release 2022 No release 2008 3001 37.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011 3							
2022 No release 2008 3001 37.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6							
2008 3001 37.41 Yakima 2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011 2							
2009 2965 25.21 Yakima 2010 3015 23.24 Yakima 2011 3004 29.24 Yakima 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima 2011				37.41		Yakima	
Reecer Creek 2010 3015 23.24							
Reecer Creek 2011 3004 29.24 Yakima							
Reecer Creek 2012 3026 30.52 Yakima 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							
Reecer Creek 2013 3032 13.35 Yakima 2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							
2014 3031 7.46 Yakima 2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							
2015 3026 3.26 Yakima 2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima	Reecer Creek						
2016 Yakima 2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							
2017 Yakima 2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima			3020	J.40			
2018 3069 29.96 Yakima 2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							
2019 3005 2.56 1.10 Yakima 2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima			2060	20.06			
2020 No release 2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima					1.10		
2021 No release 2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima				2.56	1.10	i akima	
2022 4088 13.13 6.93 Yakima 2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima							
2009 3000 16.6 Yakima 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima				10.10		3 7.1.	
Little Naches 2010 3072 18.3 Yakima 2011 3022 9.6 Yakima					6.93		
2011 3022 9.6 Yakima							
2011 3022 9.6 Yakıma	Little Naches						
2012 3014 20.3 Yakima							
		2012	3014	20.3		Yakima	


	2013	3019	7.6		Yakima	
	2014	3012	6.6		Yakima	
	2015	3026	0		Yakima	
	2015	3004	0		Yakima	
	2015	6030	0		Yakima	
	2016	3008	2.6		Yakima	
	2017				Yakima	
	2018	3042	12.3		Yakima	
	2019	3006	*		Yakima	
	2020	No rele	ase			
	2021	No rele	ase			
	2008	3000	11.4		Yakima	
	2009	3007	15.5		Yakima	
	2010	3050	12.1		Yakima	
	2011	3008	13.8		Yakima	
	2012	3020	11.2		Yakima	
	2013	1518	4.9		Yakima	Above Buried Section
Wilson Creek	2013	1502	10.2		Yakima	Below Buried Section
	2014	3024			Yakima	
	2015	3027	8.2		Yakima	
	2016	3011	7.1		Yakima	
	2017		11.6		Yakima	
	2018	3019	48.5		Yakima	
	2019	6082	2.14	0.87	Yakima	
	2020	No release				
	2021	No release				
	2022	4074	21.38	20.4	Yakima	
	2018	3024	2.85		Yakima	
Swauk Creek	2019	3041	0.13	75.5	Yakima	
Swauk Cieek	2020	No rele	ase			
	2021	No rele	ase			
	2022	3031	9.89	4.46		
Tieton River	2019	3010	9.16	8.6	Yakima	
	2020	No release				
	2021	1289	0.93	0.71	Yakima	
	2022	No release				

C. Effect of river flow and release month on smolt survival rate

One of our monitoring objectives was to evaluate the effects of river flow on juvenile Coho outmigration survival rate, and to determine whether the effect differed as a function of smolt release month (February, March and April). A CJS model was used to evaluate the effect of river flows on outmigration survival rate for each release month (February, March and April). Among

several candidate models considered, the model with river flow and release month was the most parsimonious; the best competing model was φ (~Dam:Year:month + RF) p(~Dam:Year:month + RF). Based on the best CJS models that included river flow and release months as covariates (the model with the lowest QAICs), we observed a positive correlation between flow and survival rate (survival increased as flow increased) for all three months. The highest survival rates over the range of flows were found for the March release groups, followed by April releases, and lastly February releases (Figure 9). However, the sample size for February releases was small (4% of total releases) compared to March releases (45%) and April releases (51%). Since Prosser was the only location with releases in each month, we could not compare the effect of release month for all release groups across all locations. Survival rates among years at the Prosser location (Figure 9) were highest for the March release groups.

Figure 9. The relationship between survival probability from release location to McNary Dam and the river flow at Prosser Dam for the smolt release groups each month. The relationship was developed using 7 years of PIT-tag data (2015-2022).

3.7 Smolt-to-Adult Returns (McNary juvenile to Bonneville adult)

Coho salmon return to the spawning area after a period of 0-2 years after outmigration. We estimated the smolt-to-adult return (SAR) for both the outmigration years 2020 and 2021, but the data for 2021 may not be complete at this time, and we may need to wait for another year for a full accounting of returns from outmigration year 2021. The results from previous years (2004-2020)

showed that SAR estimates varied depending on the year and life stage at release (parr and smolt), as depicted in Table 16. On average, the SAR was slightly higher for the group released as parr (5.83±0.39%) compared to the SAR of the group released as smolts (5.48±0.1%). (see table 16 and figure 10). However, for the migration year 2021, the SAR was highest for the smolt group (6.87% ± 1.04%), while it was zero for the Parr group. This zero-return rate for the parr group could be attributed to the low number of available PIT tags (only 1,989) for that particular migration year. Due to the smaller sample size and the additional sources of mortality experienced by the parr group, it appears that so few tagged juveniles survived to ocean entry that none of them returned to Bonneville Dam.

When comparing just the in-basin brood fish released as parr and smolts in upriver tributaries targeted for natural spawning, SARs for the parr releases were 7.89% while SARs for the smolt releases were 5.14%, based on the migration years spanning from 2008 through 2019. Likewise, within the Naches River basin, SAR for the parr releases stood at 5.05%, while SARs for the smolt releases were recorded at 5.15%.

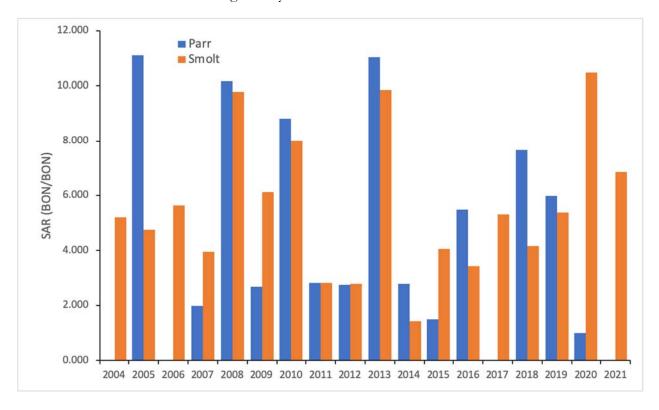
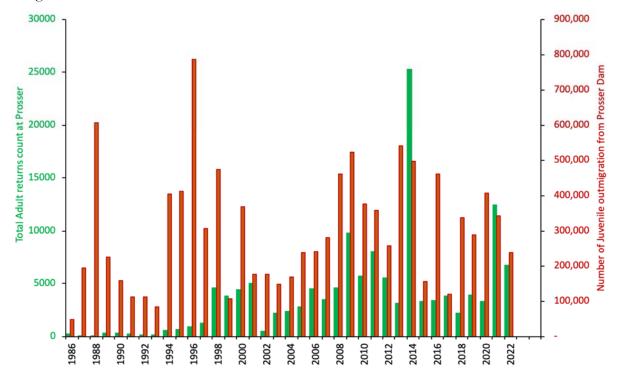

The variation in SARs among years can be associated with various factors, including smolt size, release and ocean entry timing, and ocean conditions. These factors can influence the survival and return rates of Coho salmon, leading to fluctuations in SAR estimates from year to year.

Table 16. Smolt-adult returns (SAR, based on juvenile detection at McNary Dam and adult detection at Bonneville Dam) for each release over migration years 2004-2021. The values with yellow color indicate the value is subject to revision if 2 or more year-ocean adults may return later. "N" represents the number of fish with PIT tags released; "SE" is the standard error.

Migration		Parr		Smolt			
year	N	SAR	SE	N	SAR	SE	
2004	NA			12412	5.22	2.06	
2005	9576	11.11	11.59	31246	4.76	1.32	
2006	8091	0.00	0.00	21260	5.63	0.89	
2007	11129	1.98	1.41	30681	3.97	0.72	
2008	20507	10.17	1.93	33668	9.77	0.87	
2009	29988	2.69	0.75	33146	6.13	0.69	
2010	27325	8.82	1.14	22845	8.01	0.82	
2011	27229	2.80	1.38	25286	2.82	0.92	
2012	33657	2.74	0.71	26705	2.78	0.59	
2013	31973	11.05	1.63	21023	9.86	0.89	
2014	28782	2.78	0.95	19970	1.43	0.40	

2015	28611	1.49	1.50	17544	4.07	0.90
2016	25815	5.48	1.49	25069	3.44	0.60
2017	NA			14469	5.31	1.16
2018	21244	7.65	1.47	19696	4.16	0.88
2019	41275	5.99	1.87	20305	5.38	1.16
2020	2538	1.00	0.76	13865	10.48	0.93
2021	<mark>1989</mark>		NA	9939	<mark>6.87</mark>	1.04
Average		5.83	0.39		5.48	0.10

Figure 10. Annual Smolt Adult returns (SAR) percentage Bonneville - Bonneville for groups released as "Parr" and "Smolt" for each migration year.



3.8 Adult returns

The figure 11 illustrates the number of juvenile outmigrants from Prosser and the adult returns to the Yakima River basin. From 1997 onwards, the average adult Coho escapement into the Yakima Basin has been approximately 4,500 Coho per year. However, the highest recorded return of adults, combining both hatchery releases and natural production, exceeded 25,000 fish in 2014 (Figure 11). In 2022, the estimated total adult escapement was approximately 6,708.

The ratio between the number of juvenile outmigrants from Prosser and the adult returns into the Yakima Basin is approximately 1.2%. This indicates that, out of every 1,000 juveniles that migrate out from Prosser, around 12 adults successfully return back to the Yakima Basin.

Figure 11: Total juvenile outmigration from Prosser and the estimated adult escapement from 1986 through 2022.

3.9 Age- distribution at return

From outmigration years 2004 through 2022 a total of 4475 returning Coho with PIT tags that were released as smolt and 1521 returning Coho that were released as parr in the Yakima Basin were detected at Bonneville Dam (see Table 17). Among the tagged adults released as smolts, ~90% of the returning coho were age 3 (ocean age 1) while 10% of the returns were age 2 (ocean age 0), and less than 1% were age 4 (ocean age greater than 1). For the group released as Parr, the age distribution for the group released as parr was similar to the group released as smolts. Approximately 93% of the returning Coho were age 3, 7% were age 2, and less than 1% were age greater than 3.

Table 17. Total number of PIT-tagged Coho detected at return to Bonneville Dam by ocean age (years) for the group of fish released as a life stage "smolt" (A) and the group of fish released as "Parr" (B). Values shaded yellow are subject to change based on any 2-ocean returns.

A. Smolts

D 1	D 1	3.6	Number	r of adult	returns			
Brd Year	Rel. Year	Migr. Year	Ocean Age <1	Ocean Age1	Ocean >Age 1	Ocean Age <1	Ocean Age1	Ocean >Age 1
2002	2004	2004	1	47	0	2.08	97.92	0.00
2003	2005	2005	12	167	0	6.70	93.30	0.00
2004	2006	2006	21	195	3	9.59	89.04	1.37
2005	2007	2007	5	188	0	2.59	97.41	0.00
2006	2008	2008	133	427	1	23.71	76.11	0.18
2007	2009	2009	17	260	0	6.14	93.86	0.00
2008	2010	2010	16	306	3	4.92	94.15	0.92
2009	2011	2011	3	136	2	2.13	96.45	1.42
2010	2012	2012	8	104	0	7.14	92.86	0.00
2011	2013	2013	19	546	0	3.36	96.64	0.00
2012	2014	2014	13	88	1	12.75	86.27	0.98
2013	2015	2015	13	64	0	16.88	83.12	0.00
2014	2016	2016	9	121	2	6.82	91.67	1.52
2015	2017	2017	16	131	0	10.88	89.12	0.00
2016	2018	2018	39	99	1	28.06	71.22	0.72
2017	2019	2019	8	192	0	4.00	96.00	0.00
2018	2020	2020	158	730	0	17.79	82.21	0.00
2 019	2 021	2021	<mark>24</mark>	<mark>146</mark>	0	14.12	85.88	0.00
<mark>2020</mark>	<mark>2022</mark>	<mark>2022</mark>	Not availa	ble yet				
Su	m/Aver	age	515	3947	13	9.98	89.62	0.39

B. Parr

D 1	D 1) (°	Numbe	Number of adult returns					
Brd Year	Rel. Year	Migr. Year	Ocean Age <1	Ocean Age1	Ocean >Age 1		Ocean Age <1	Ocean Age1	Ocean >Age 1
2002	2004	2004	0	0	0	_			
2003	2005	2005	0	3	0		0.00	100.00	0.00
2004	2006	2006	0	6	0		0.00	100.00	0.00
2005	2007	2007	1	20	0		4.76	95.24	0.00
2006	2008	2008	30	242	0		11.03	88.97	0.00
2007	2009	2009	4	73	0		5.19	94.81	0.00
2008	2010	2010	10	246	0		3.91	96.09	0.00

2009	2011	2011	9	163	0	5.23	94.77	0.00
2010	2012	2012	15	73	0	17.05	82.95	0.00
2011	2013	2013	13	197	0	6.19	93.81	0.00
2012	2014	2014	2	30	0	6.25	93.75	0.00
2013	2015	2015	0	7	0	0.00	100.00	0.00
2014	2016	2016	2	52	0	3.70	96.30	0.00
2015	2017	2017	0	0	0			
2016	2018	2018	60	154	1	27.91	71.63	0.47
2017	2019	2019	8	98	0	7.55	92.45	0.00
2018	2020	2020	0	2	0	0.00	100.00	0.00
<mark>2019</mark>	2 021	2 021	O	O	O			
2020	<mark>2022</mark>	<mark>2022</mark>	<mark>Not availal</mark>	ole yet				
Su	m/Aver	age	154	1366	1	6.58	93.38	0.03

4. Acknowledgment

We thank all of the crews whose collective fish-tagging efforts over the years made this study possible. We are also grateful to David Lind, who provided valuable comments in the draft report. We would also like to thank Daylen Isaac, who provided the hydrological data.

5. References

- Berg, L. and Fast, D. 2001. Yakima Subbasin Summary. Prepared for the Northwest Power Planning Council. August 3, 2001.
- Bradford, M.J., R.A. Myers, and J.R. Irvine. 2000.Reference points for coho salmon (Oncorhynchus kisutch) harvest rates and escapement goals based on freshwater production. Canadian Journal of Fisheries and Aquatic Sciences 57:677-686.
- Chapman, D.W. 1986. Salmon and steelhead abundance in the Columbia River in the nineteenth century. Transactions of the American Fisheries Society 115:662-670.
- McCann et al., 2020. Comparative Survival Study of PIT-tagged Spring/Summer/Fall Chinook, Summer Steelhead, and Sockeye DRAFT 2020 Annual Report. (https://www.fpc.org/documents/CSS/2020CSSDraftReport.pdf)
- Conner, M. M., S. N. Bennett, W. C. Saunders, and N. Bouwes. 2015. Comparison of tributary survival estimates of steelhead using Cormack-Jolly-Seber and Barker models: Implications for sampling effort and designs. Transactions of the American Fisheries Society, 144:1, 34—47.
- Davidson, F.A. and S.J. Hutchinson. 1938. The geographic and environmental limitations of the Pacific salmon (genus Oncorhynchus). Bulletin Bureau of Fisheries (U.S.) 48:667-692.
- Dunnigan, J. L., W. J. Bosch, and J. D. Hubble. 2002. Preliminary results of an effort to reintroduce coho salmon in the Yakima River, Washington. Pp. 53-75 in "Hatchery Reform: the

- Science and the Practice", Proceedings of the International Congress on the Biology of Fish, July, 2002, Don MacKinlay, editor, 555 West Hastings St., Vancouver BC V6B 5G3 Canada.
- Fulton, L.A. 1970. Spawning areas and abundance of steelhead trout and coho, sockeye, and chum salmon in the Columbia River Basin-past and present. United States Fish and Wildlife Service. Special scientific report-Fisheries Number 618. Washington, D.C.
- Haeseker, S. L., J. A. McCann, J. Tuomikoski, and B. Chockley. 2012. Assessing freshwater and marine environmental influences on life-stage-specific survival rates of Snake River spring–summer Chinook Salmon and steelhead. Transactions of the American Fisheries Society 141:121–138.
- Haring, D. 2001. Habitat limiting factors in the Yakima River Watershed WRIAs 37-39 final report. Washington State Conservation Commission, Olympia, Washington. 364 pp.
- Hassler, T. J. 1987. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest): coho salmon. United States Fish and Wildlife Service, National Wetlands Research Center. Biological Report 82(11.70).
- Jones, K.K. and K.M.S. Moore. 1999. Habitat Assessment in coastal Basins in Oregon: Implications For Coho Salmon Production and Habitat Restoration. 329-340. In Knudsen, E. E., C. R. Steward, D. D. MacDonald, J. E. Williams, and D. W. Reiser. Sustainable Fisheries Management: Pacific Salmon. Lewis Publishers, Boca Raton.
- Kreeger, K.E., and W.J. McNeil. 1993. Summary and estimation of the historic run-sizes of anadromous salmonids in the Columbia and Yakima rivers. Prepared for Yakima River Basin Coalition, Yakima, WA.
- Laake, J. (2019) 'RMark: an R interface for analysis of capture-recapture data with MARK'. Seattle WA: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center.
- Lebreton, J. D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62:67–118.
- Moyle, P. B. 2002. Inland Fishes of California. Berkeley: University of California Press.
- Neeley, D. 2012. Prosser-Passage Estimation Issues. Appendix F in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.
- Pandit, S., T. Newsome, B. Bosch. 2021. Juvenile Coho outmigration survival and adult Coho returns to the Yakima Basin, 1999-2020. Appendix E *in* Blodgett, Johnston, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Yakima Subbasin, Final Report for the Performance Period May 1, 2020 through April 30, 2021. Yakama Fisheries, Toppenish, WA.

- Petrosky, C. E., and H. A. Schaller. 2010. Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook Salmon and steelhead. Ecology of Freshwater Fish 19:520–536
- R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available: https://www.R-project.org/.
- Raymond, H. L. 1968. Migration rates of yearling chinook salmon in relation to flows and impoundments in the Columbia and Snake Rivers. Transactions of the American Fisheries Society 97(4): 356-359.
- Reeves, G.H., F.H. Everest, and T.E. Nickelson. 1989. Identification of Physical Habitats Limiting the Production of Coho Salmon in Western Oregon and Washington. Gen. Tech. Rep. PNW-GTR-245. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 18 p.
- Reiser, D. W. and T. C. Bjornn. 1979. Influence of Forest and Rangeland Management of Anadromous Fish Habitat in Western North America- Habitat Requirements of Anadromous Salmonids. USDA Forest Service General Technical Report PNW-96.
- Sandercock, F.K. 1991.Life History of Coho Salmon. In Groot, C. and L. Margolis (Eds.). Pacific Salmon Life Histories. UBC Press, Vancouver. 564 p.
- Scheuerell, M. D., R. W. Zabel, and B. P. Sandford. 2009. Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus spp.). Journal of Applied Ecology 46:983–990.
- Thompson, K. 1972.Determining stream flows for fish life. Pages 31-50 in Proceedings, Instream flow requirements workshop. Pacific Northwest River Basins Commission. Vancouver, Washington.
- Tiffan KF, Kock TJ, Haskell CA, Connor WP, Steinhorst RK. 2009. Water velocity, Turbulence, and Migration Rate of Subyearling Fall Chinook Salmon in the Free-Flowing and Impounded Snake River. Trans Am Fish Soc 138:373–384.
- Tuck, R.L. 1995.Impacts of Irrigation Development on Anadromous Fish in the Yakima River Basin, Washington. M.S. Thesis, Central Washington University, Ellensburg. 246 p.
- Tuomikoski, J., J. McCann, B. Chockley, H. Schaller, S. Haeseker, J. Fryer, R. Lessard, C. Petrosky, E. Tinus, T. Dalton, and R. Ehlke. 2013. Comparative survival study (CSS) of PIT-tagged spring
- White, G. C., and K. P. Burnham. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120-138.
- Williams, J. G. 2006. Central Valley salmon: a perspective on Chinook and steelhead in the Central Valley of California. San Francisco Estuary and Watershed Science [online serial] 4(3): article 2.
- Wydoski, R.S. and R.R. Whitney 2003. Inland Fishes of Washington. University of Washington Press. 322 pp. Seattle WA.

Appendix F Juvenile Outmigration Survival of Yakima Basin Summer Chinook Smolts to Prosser and McNary Dams, 2009-2022

Prepared by
Shubha Pandit, Melinda Davis, Bill Bosch
Yakima-Klickitat Fisheries Project
Yakama Nation Fisheries
P.O. Box 151, Toppenish, WA 98948, USA

August 22, 2023

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
1. INTRODUCTION	6
2. METHODOLOGY	8
2.1. GEOGRAPHICAL DISTRIBUTION: HISTORICAL AND CURRENT	8
2.2. Brood stocks and fish data	9
2.3. STATISTICAL ANALYSES	11
2.3.1. SURVIVAL AND DETECTION PROBABILITY	11
2.3.2. RELATIONSHIP BETWEEN ANNUAL SURVIVAL RATE AND RIVER FLOW	12
2.3.3. RELATIONSHIP BETWEEN SURVIVAL RATE, RELEASE MONTH AND FISH SIZE	13
2.3.4. TRAVEL TIME AND MIGRATION RATE	13
2.4.5. SMOLT-TO-ADULT-RETURNS (SAR)	13
2.4.6. AGE COMPOSITION OF ADULT RETURNS	14
3.0. RESULTS AND DISCUSSION	14
3.1. FISH LENGTH	14
3.2. DETECTION PROBABILITIES AT PROSSER AND MCNARY	16
3.3. JUVENILE RELEASE-PROSSER AND McNary SURVIVAL RATE	19
3.3.1. Annual juvenile Survival rate	19
3.3.2. SURVIVAL RATE AMONG RELEASE LOCATIONS	22
3.3.4. EFFECT OF RELEASE MONTH AND FISH SIZE ON SURVIVAL	24
3.4. TRAVEL TIME AND RATE OF MIGRATION	25
3.5 RECOVERED PIT TAGS ON BIRD ISLANDS	27
3.6. SMOLT-TO-ADULT RETURNS	28
3.7. AGE-AT-RETURN DISTRIBUTION	29
4. ACKNOWLEDGMENT	30
5. REFERENCE	30

Executive Summary

Summer-run Chinook salmon in the Yakima River basin were once widespread but became locally extinct by the 1970s. Since 2009, the Yakama Nation has been actively engaged in a reintroduction program. This initiative involves transporting summer Chinook eggs from Upper Columbia Basin hatcheries to the Yakama Nation's Marion Drain Hatchery, where fertilization, incubation, and rearing occur. Sub-yearling presmolts are subsequently transferred from the hatchery to permanent and mobile acclimation sites upstream for eventual release as smolts into historical spawning and rearing areas within the Yakima Basin. This program employs diverse release strategies, including variations in release locations, life stages (yearling and sub-yearling), and experimentation with different release dates. These efforts aim to maximize the chances of establishing stable and robust natural-origin summer Chinook populations within the Yakima River basin and enhance population resilience to potential environmental changes.

In 2022, a total of 822,875 summer Chinook were released at five locations within the Yakima Basin. Among the PIT-tagged populations, two distinct groups existed: one reared in traditional raceways and another reared in circular raceways. Both groups were released simultaneously from Prosser Dam on April 26th and April 27th, 2022, totaling 5,240 fish from traditional raceways and 5,210 fish from circular raceways. This evaluation represents an ongoing annual monitoring effort, initiated in 2009, also aimed at assessing whether employing different rearing tanks results in improved post-release fish performance. Should alternative techniques prove more effective than the currently employed raceways, this study may guide decisions regarding potential shifts in fish rearing practices.

For data collected from 2009 to 2018, a logistic regression model (Neeley 2012) was used to estimate survival probability. However, since 2019, survival probability from release locations to downstream dams, along with detection rates at Prosser and McNary Dams, has been estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model. Additionally, other statistical analyses have explored travel time and the impact of river flow. These analyses aim to answer various research questions, including the juvenile detection and survival rate from release sites to McNary Dam of each group released at different locations. The general observations/results are given below:

- The probability of detection and survival rates of juvenile summer Chinook at McNary Dam varied among years. In 2022, among the five groups released, only the group released at Roza Dam exhibited a lower detection rate (12.79% ± 2.63). Conversely, the other four groups had relatively similar detection rates at McNary Dam, approximately 27%. Comparing the detection rates between the two groups reared in circular and traditional raceways, the circular-reared group had a rate of 27.77% ± 7.47, while the traditional raceways-reared group had a rate of 26.19% ± 6.78. In terms of survival rate, the highest average annual survival rate at McNary Dam was in 2011 (40.15±1.94%); and the lowest survival rate was in 2015 (0.73±0.47%) and the same trend was followed by the Prosser Dam (73.64±7.47 in 2011 and 1.95±0 in 2015). Among the five groups released in 2022, the highest survival rate was observed in the Roza group (25.7% ± 5.4, followed by the group released from Prosser, which was reared in circular raceways and had the second-highest survival rate (20.0% ± 3.2). The Buckskin group came in third; and the group with rearing in traditional raceway was in fourth (14.16%±2.0), and the lowest rate was found in the Wapatox group (5.3% ± 1.2, see Table 8).
- Analysis also reveals the importance of release month and fish size on survival rates. For
 instance, for fish with a length of 50mm released in April, the survival rate to Prosser Dam
 exceeded 50%, whereas the same-sized fish released in June had a survival rate of
 approximately 10%. However, for larger fish, release timing seemed to have no significant
 effect on survival rates.
- Travel times in 2022 varied slightly among different groups, with the circular raceways group having a median travel time of 39 days to reach McNary, while other groups took approximately 42 to 43 days. This difference may be attributed to fish size, with individuals from circular raceways tending to be larger than those from traditional raceways.
- The rate of travel from Prosser Dam to Bonneville Dam differed based on release month. The group released in April had an average travel rate of 7.19 km/day, whereas the group released in June experienced a more rapid rate of 16.64 km/day. This suggests that fish released earlier spent more time in the river to undergo necessary physiological and morphological changes before transitioning to life in saltwater. Interestingly, regardless of release timing, summer Chinook seemed to enter the ocean at nearly the same time, although outmigration survival rate was higher for the early release.

- Avian predation on Yakima Basin summer Chinook is evident, with PIT tag recoveries providing insights. For instance, in 2017, out of 17,539 PIT-tagged summer chinook released, 403 fish were detected at McNary Dam, while 660 fish were retrieved on Badger Island. In 2022, among the 48,451 PIT tags released, 619 summer Chinook PIT tags were detected at McNary Dam, while 1,441 PIT tags were recovered on Badger Island. It's essential to acknowledge that PIT tags found on islands represent only a fraction of tagged fish preyed upon by avian predators due to factors such as tag excretion in other areas on the way going to bird colonies, undetected tags on islands, tag displacement, damage, or loss during flooding. This recurring pattern of increased fish recapture in bird colonies highlights a significant predation impact, emphasizing the need for action to address the predation issue in the Yakima River basin.
- Smolt-Adult-Return (SAR) is a crucial metric indicating the percentage of smolts that survive and return to spawn. It provides insight into the sustainability of adult returns over time. SAR estimates from 2009 to 2018 (migration year) varied by year, with the highest SAR observed for fish released in 2011 ($10.24\% \pm 1.14\%$) and 2012 ($4.24\% \pm 0.09\%$). In contrast, the drought year of 2015 saw a SAR of zero, while other years had approximately 1% SAR from Bonneville to Bonneville. The variation in SARs is influenced by factors such as smolt size, release and ocean entry timing, and ocean conditions.
- The age composition of returning adult fish revealed that 64% were age 4 (3-year ocean age), 23% were age 3 (2-year ocean), 9% were age 5 (4-year ocean), and less than 1% were age 6 (5-year ocean age). Additionally, 4% of the juveniles detected at Bonneville returned as jacks (age-2, 1-year ocean).

1. Introduction

The summer Chinook (Oncorhynchus tshawytscha) is one of the three historical chinook runs in the Yakima River basin. Adults of the summer run first enter the Columbia River from the ocean in May, and the Yakima River as early as June, but the summer run to the Yakima is shaped by flow and temperature in the lower Yakima River, which is strongly influenced by irrigation withdrawals and return flow. Unfavorable conditions can delay entry of the latter part of the summer run from the Columbia River until near the fall spawning season. Juvenile summer Chinook typically leave the Yakima River from late spring to early summer of the year after spawning. Summer Chinook were once widely distributed in the Yakima and Naches rivers (Figure 1) but were extirpated from the Yakima basin by 1970. For decades, several programs such as habitat restoration and species reintroduction were implemented in the Yakima River. After decades of habitat and instream flow restoration, coupled with improved juvenile and adult passage at irrigation diversions and hydropower projects, reintroduced adult summer chinook are returning along with fall chinook to the Yakima basin. Annual abundance of summer/fall Chinook at Prosser Dam on the lower Yakima River has increased from an average of just over 1000 fish from 1983 through 1999 to over 3,600 fish on average during the period 2000-2022. We have successfully achieved some level of natural production and local adaptation, but both runs continue to depend on hatchery supplementation.

Based on 2009-2022 release data, an annual average of 359,660 summer Chinook juveniles were released in the Yakima basin (Table 1). Summer chinook eggs are brought either from the Entiat or Wells hatchery (Entiat and Wells stocks) to the Yakama Nation's Prosser Hatchery for fertilization, incubation and rearing through the fall and winter. The following spring, sub-yearlings are moved from the hatchery upstream to sites on the Yakima and Naches rivers adjacent to historical spawning areas where they are acclimated and released. Several release strategies have been utilized to maximize the likelihood of achieving stable and abundant returns of the species to the Yakima River and to enhance the stability and resiliency of the population against potential environmental changes. The strategies include releasing the juveniles from different locations (spatial variation) and on different dates (temporal variation). Whether one release strategy performs better than other strategies in terms of juvenile survival and smolt-to-adult return (SAR) are fundamental questions in determining whether species management and production goals are being reached. Each year a portion of each release group has been PIT-tagged as part of a long-term monitoring program to

refine project objectives and strategies, applying what is learned from experimentation, monitoring, evaluation and literature reviews within an adaptive management framework. This evaluation is an update of ongoing annual monitoring that began with the first reintroductions in 2009. Furthermore, hatchery fish are typically raised in traditional rectangular raceways, which lack uniform water velocity across the raceways. However, recently, circular raceways have been introduced. Therefore, since 2022, we have initiated an experiment to evaluate the impact of fish rearing in two types of raceways (rectangular (traditional) and circular) on fish performance, especially after their release into the river.

Juvenile survival rates often vary by seasons and years. This variation can be associated with rearing history and environmental conditions. For example, Zabel and Achord (2004) found that juvenile survival rate of wild salmonids was related to fish size (fork length), with larger juveniles having higher downstream survival. Survival rate also increases as river flow increases. Although the Yakima River is highly controlled by storage reservoirs and irrigation and hydropower withdrawals, there is still a large variation in the flow pattern within and across years, which can affect the survival rate of juvenile salmon. Ocean-type summer and fall chinook, which naturally outmigrate from Columbia River tributaries in late spring and early summer, can be harmed by rising water temperature as they attempt to leave the Yakima Basin. Based on the effect of temperature, one can postulate that survival rate should be lower if the fish are released in later months, e.g. June, than fish released as early as April. However, individuals released earlier are likely to be smaller than fish released later and closer to natural outmigration timing. There may thus be an interaction between fish size and release timing on survival.

The primary objectives of these analyses are to determine the survival rate from release sites to Prosser Dam or McNary Dam of the groups released at different locations in the Yakima Basin; and understand how other factors (fish size and release date) affect juvenile survival rates using previous years' data (2009-2021). This information is critical for recovery of depressed Chinook stocks.

To achieve these objectives, we focused on the following research questions:

- What was the juvenile detection and survival rate from the release sites to Prosser Dam McNary
 Dam of each of the release groups during 2022?
- Does juvenile survival and travel time vary between sub-yearling and yearling release groups?
- What was the effect of release date and fish size at the time of tagging on survival rate and travel

time?

- Do fish reared in circular raceways exhibit different post-release performance compared to those reared in traditional raceways?
- What was the Smolt-Adult return rate (SAR) for each year's combined release groups over the study period (2009-2022)?
- What was the age composition of the adult returns?

2. Methodology

2.1. Geographical distribution: historical and current

Spring, summer and fall runs of Chinook salmon are among the salmon species native to the Yakima River basin. Their historical spawning area encompassed the entire Yakima River and its larger tributaries (Figure 1A) but has been reduced by changes in habitat, passage and instream flow (Figure 1B), many of which have been remedied in recent years. A major objective of the summerrun Chinook reintroduction program, begun in 2009, is to re-establish spawning in the primary historical spawning areas for this run, which are the Yakima River upstream of Wapato Dam through the canyon reach above Roza Dam, and the Naches River from the Yakima River to its confluence with the Tieton River (Figure 1C). The uppermost acclimation and release sites designated in the reintroduction program were located to facilitate adult homing throughout this historical geographical distribution, while releases to the lower Yakima River were intended to maximize survival rates and improve opportunities to collect returning adults as we work to establish a localized brood source (Figure 1D). Figure 1D shows the release locations over the entire study period from 2009 through 2022.

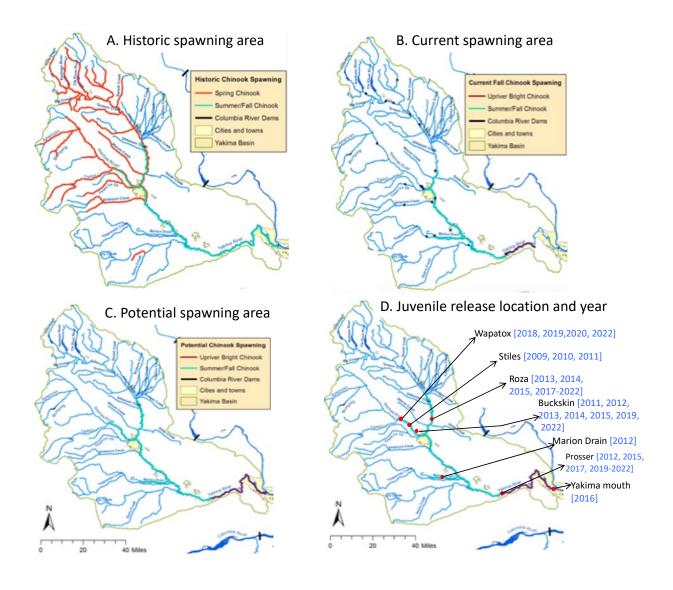


Figure 1. Historical (A), current (B) and potential (C) summer Chinook spawning areas; and the locations/tributaries/river segments (D) where summer Chinook juveniles were introduced from 2009 through 2022.

2.2. Brood stocks and fish data

Every year, eggs of summer Chinook have been brought to Yakima basin either from Wells Hatchery, Entiat Hatchery or Eastbank Hatchery. The adult fish were spawned at either Wells or Entiat; green eggs and milt were transferred to the YN Prosser Hatchery for fertilization, incubation and rearing. Yearlings released from Prosser Hatchery were reared in the Marion Drain hatchery,

while the subyearlings were reared in Prosser hatchery. Fish were directly released from the hatchery or from acclimation facilities.

All PIT tag release and detection data are available in the PTAGIS database maintained by the Pacific States Marine Fisheries Commission. We queried PTAGIS (https://www.ptagis.org/) in April 2023 to retrieve available PIT-tag detection information for all summer Chinook juveniles released in the Yakima Basin from migration year 2009 through 2022. On average 36,352 juvenile summer Chinook were PIT-tagged per year from 2009 through 2022. In 2022, a total of 822,875 summer Chinook were released in the Yakima Basin. This release included 41,609 fish with PIT tags between May 9th and May 23rd, 2022 (as detailed in Table 1 and Table 2). That year's release occurred approximately two weeks later for subyearlings compared to the 2021 schedule (as shown in Table 2). Furthermore, there were two groups: fish reared in traditional raceways and fish reared in circular raceways. Specifically, 5,240 fish from traditional raceways and 5,210 fish from circular raceways were released on April 26th and April 27th, 2022, respectively.

Table 1. Total annual releases of summer Chinook and the numbers and percentages of PIT tags in each release.

	Total Release		
Year	Total release (with & without PIT tags)	PIT tags	PIT tag Percentage (%)
2009	180,911	30,045	16.61
2010	200,747	29,997	14.94
2011	215,770	49,893	23.12
2012	197,103	29,996	15.22
2013	136,563	40,507	29.66
2014	254,881	30,278	11.88
2015	277,448	34,457	12.42
2016	37,000	37,000	100.00
2017	244,499	34,826	14.24
2018	74,000	30,131	40.72
2019	806,000	41,143	5.10
2020	1,307,843	12,814	0.94
2021	279,594	66,233	23.68
2022	822,875	41,609	5.06
Average	359,660	36,352	22%

For each fish with a PIT tag we constructed a detection history: a record indicating all detection locations and whether the tagged fish was detected or not detected at each juvenile detection site,

focusing on Prosser, McNary, John Day and Bonneville dams (PRO, MCJ, JDJ, B2J, BCC), and the Estuary Towed Experimental Array (TWX).

Table 2. Brood year, broodstock, and the number of PIT-tagged sub-yearling summer Chinook released by location and date (Early, Mid and Late) from outmigration years 2009 through 2022. Fish were released during April, May and June every year. Releases on or before May 10; May 11 through May 25; and after May 25 are represented as Early, Mid and Late release periods, respectively.

0		Migra	Release						Early										Mic									L	ate			i
Brood Year	Broodstock	tion		Life stage		April					May								Ma	ıy						M	ay		Ju	ine		1
Year		Year	Location		4/10	4/24	4/29	4/30	5/6	5/7	5/8	5/9	5/10	5/12	5/13	5/14	5/15	5/16	5/17	5/18	5/19	5/20	5/23	5/24	5/25	5/29	5/31	6/1	6/12	6/2	6/5	tota
2008	WELLS	2009	StilesPond					-		- '					-			-,			-,-					-,			30045			3004
2009	WELLS	2010	StilesPond													29997																2999
2010	WELLS	2011	NelsonSp				29893																									2989
2010	WENN	2011	StilesPond															20000														200
2011	WELLS	2012	MarionDH																					9999								99
2011	WELLS	2012	NelsonSp																	9998												99
2011	WELLS	2012	Prosser													9999																999
2012	WELLS	2013	NelsonSp														15063											10053	5			251
2012	WELLS	2013	RozaDam																							15087						150
2013	WELLS	2014	NelsonSp											10088																10109		2019
2013	WELLS	2014	RozaDam																												10081	100
2014	WELLS	2015	NelsonSp												10332																	103
2014	WELLS	2015	Prosser						4030																							403
2014	WELLS	2015	RozaDam				10043											10052														2009
2015	WELLS	2016	RozaDam				37000																									370
2016	WELLS	2017	NelsonSp																								17296					1729
2016	WELLS	2017	Prosser														2504															25
2016	WELLS	2017	RozaDam																						15026							150
2017	WELLS	2018	RozaDam														15082															150
2017	WELLS	2018	Wapatox																			15049										1504
2018	WELLS/ENT	2019	NelsonSp																10365													103
2018	WELLS/ENT	2019	Prosser												10267																	102
2018	WELLS/ENT	2019	RozaDam												10254																	102
2018	WELLS/ENT	2019	Wapatox																		10266											102
2019	WELLS	2020	Prosser		5011																											50
2019	WELLS	2020	RozaDam											2813																		28:
2019	WELLS	2020	Wapatox								4996																					49
2020	WELLS	2021	Prosser	Sub-yearling	ng					15012																						1501
2020	WELLS	2021	Prosser	Yearling		20640																										206
2020	WELLS	2021	Wapatox (Riv)	Sub-yearlin	ng			15815																								158
2020	WELLS	2021	Wapatox(pipe)	Sub-yearlin	ng			14766																								147
2021	EastbankCirs	2022	Prosser (cir.)	Sub-yearlin	ng							5240																				52
2021	EastbankRw	2022	Prosser (race)	Sub-yearlin	ng							5210																				52
2021	WELLS/ENT	2022	RozaDam	Sub-yearlin	ng																	13810										138
2021	WELLS/ENT	2022	Nelson	Sub-yearlin	ng								3544																			354
2021	WELLS/ENT	2022	Wapatox	Sub-yearlin																			13805	5								1380

Note: "WELL" represents Wells Hatchery broodstock, "WENN" represents Wenatchee stock, "WELLS/ENT" represents Wells Hatchery or from Entiat hatchery Stock.

2.3. Statistical analyses

2.3.1. Survival and Detection Probability

Juvenile survival probabilities from release locations to Prosser and/or McNary were estimated for each release group from migration years 2009 through 2022. We also estimated the average survival rate for each migration year regardless of release site. For releases from 2009 through 2018 a logistic regression model (Neeley 2012) was used to estimate survival. Beginning in 2019 and in this report, survival probability from release locations to downstream detection at McNary Dam; and the detection rate at Prosser and McNary dams were estimated using the Cormack-Jolly-Seber (CJS) mark-recapture model (White and Burnham 1999; Lebreton et al. 1992; Williams et al. 2002, Conner

et al. 2015), which has been commonly used within the Federal Columbia River Power System (FCRPS) to estimate survival rates for juvenile salmon and steelhead (Tuomikoski et al. 2013). The model uses multiple detections of individually marked fish at several dams with PIT-tag detection capabilities (i.e. antenna arrays). One of the assumptions of the CJS model is that there is no immigration or emigration during capture and recapture intervals, which is valid for discrete tag groups migrating through the hydrosystem (which involves passage at several hydroelectric dams) because all fish in the tag group are moving in one direction and over a relatively short period (Conner et al. 2015). All of the assumptions of the CJS models are considered to be met.

To evaluate post-release performance among releases grouped by life stage (yearling vs. sub-yearling) or release location (Naches River vs bypass pipe at the Wapatox diversion) we compared juvenile survival rates and travel times. We also introduced fish size and release period as covariates in the CJS model to determine how release date (April, May or June) and fish size affected the survival rate from the release location to Prosser, and from Prosser to McNary. This CJS model was built within RMark (Laake 2019) in R, an extension of Program MARK (White and Burnham 1999).

2.3.2. Relationship between annual survival rate and river flow

Several environmental factors are known to influence downstream smolt survival, and river flow is among the most impactful (Raymond 1968; Connor et al. 2003; Tiffan et al. 2009). We therefore further evaluated whether there was a relationship between the annual survival rate and the average river flow for two summer months (May and June) measured below Prosser Dam. We chose only May and June because most of the juvenile summer Chinook were released from the end of April (29th) to the first week of June (5th) from 2009 through 2022, and they usually leave the Yakima River within 3 or 4 weeks after release. Given this timing, May and June flow can be the most influential factor for the outmigration of this run of Chinook. We downloaded river flow data for the Bureau of Reclamation gaging station (YRPW) located below Prosser Dam in the Yakima River, using the Hydromet site: https://www.usbr.gov/pn/hydromet/yakima/yakwebarcread.html, which was accessed in April 2023. A univariate linear relationship between the average survival rate of each migration year and the average river flow (May and June) of each year was built to determine whether the average annual survival rate was a function of river flow.

2.3.3. Relationship between survival rate, release month and fish size

We selected only the fraction of those tagged fish with fish length information for this analysis. Fish release dates were categorized by month. As mentioned under subheading 2.3.1, we used fish length and release month as covariates in the CJS model. Using this model, the average survival rates from release location to Prosser Dam, and from Prosser to McNary Dam were estimated for each release group with its release month and average fish length.

2.3.4. Travel time and migration rate

Travel time was estimated as the difference between either the date of release or the date of detection at Prosser Dam (site PRO), and the date of detection at McNary Dam (MCJ) or Bonneville Dam (B2J or BCC) for each group. Migration rate was calculated as length of the reach of interest (km) divided by travel time in days for the group.

2.4.5. Smolt-to-Adult-Returns (SAR)

SAR, or the percentage of smolts that survive and return as adults, is a metric that captures most of the cumulative impacts of the hydro-system and ocean conditions on anadromous fish, indicating how sustainable the returns of adults are over time. In our analysis the SAR was estimated as the percentage of smolts detected at Bonneville Dam returning as adults to Bonneville Dam using the following equation for each year and release group:

$$\cup_{at\,BON}/J_{at\,BON}$$

Where, U_{at BON} is a total number of PIT tagged fish detected at Bonneville Dam both during outmigration as a juvenile and immigration as adults. J_{at BON} is the total number of fish detected at Bonneville Dam as juveniles. Because summer Chinook can spend as many as 5 years in the ocean, we estimated SAR of the populations that out-migrated from 2009 through 2017.

The variance of SAR estimates for each category was computed by a non-parametric bootstrap resampling method (Efron and Tibshirani 1993; Manly 1997). For each sample data set (the total release group for each migration year), individual capture histories were resampled with replacement. One thousand bootstrap sample data sets were constructed and 1000 estimates of SAR were generated. Statistical bias was assessed as the difference between the mean of the bootstrap replicates and the point estimate derived from the original data (Efron and Tishirani, 1993). Due to

the non-normal distribution of bootstrap SAR estimates, bias correction was used to construct 95% confidence intervals as suggested by Manly (1997).

2.4.6. Age composition of adult returns

Age composition of adult returns was estimated by subtracting the year of adult return detection at Bonneville Dam from the brood year (migration year -1 for subyearling releases and migration year -2 for yearling releases).

3.0. Results and discussion

3.1. Fish length

During the study period from 2009 through 2022, a total of 91,634 PIT tags fish had fish size information (Table 3). Based on the available data, the average size of the sub-yearlings (fork length) at the time of tagging was 71 mm, and the size of the fish released in different months was found to be different. Fish (subyearling) released in April were somewhat smaller (71.31 mm) than fish released in May (73.08mm), but the fish released in June averaged only 62.53mm. One would expect that fish released later would be bigger than the fish released earlier, but we found that fish released in June were smaller than the group released in May. Not getting the same result as we expected might be due to a number of reasons. One possible reason could be differences in incubation and rearing temperature among groups from different hatcheries with different water sources. Grouping by age and release location, the size of the yearling group averaged 140.55±0.4mm, whereas the average sub-yearling released from Prosser measured 79.60±0.20 mm. When comparing the fish length between those reared in circular and traditional raceways, it's evident that the fish reared in circular raceways were larger (81mm) than those reared in traditional ones (76mm; see, Figure 2).

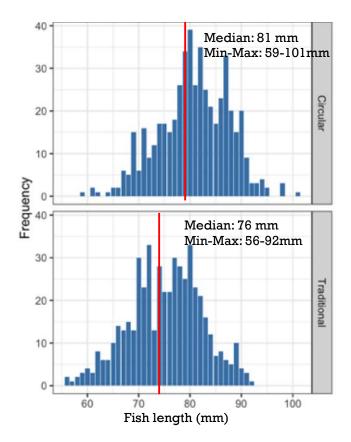


Figure 2. Frequency (count) by fish length (fork length, mm) at the time of tagging for the fish reared in circular and traditional raceways.

Year	A	pril		N	lay		Ju	ne		Poo	oled	
rear	n	Mean	SE	n	Mean	SE	n	Mean	SE	n	Mean	SE
2009							30036	63.17	0.03	30036	63.17	0.03
2010				22711	74.62	0.055				22711	74.62	0.05
2011	1467	67.58	0.14	3619	91.33	0.388				5086	84.48	0.32
2012				3095	68.27	0.131				3095	68.27	0.13
2013				3000	68.51	0.121				3000	68.51	0.12
2014				1268	63.83	0.105	1845	61.89	0.11	3113	62.68	0.1
2015	702	66.75	1	3071	69.41	0.182				3773	68.92	0.27
2016				1106	75.65	0.649				1106	75.65	0.65
2017				918	66.2	0.728				918	66.2	0.73
2019				264	75.21	0.423				264	75.21	0.42
2020				4974	75.71	0.094				4974	75.71	0.09
2021 (Yearling)	1418	140.5	0.41							1418	140.5	0.41
2021(Sub-Yearling)	2952	75.16	0.4	1117	79.61	0.2				4069	77.38	0.1
2022 (SubY.circ)	504	80.7	0.3							504	80.7	0.3
2022 (Sub.Y.race)	512	75.25	0.31							512	75.25	0.31
Mean		84.32			73.49			62.53			77.15	•

Table 3. Average fish size (mm) at the time of tagging by releasing year and month (April, May, June). The number "n" represents the subset of fish with length data in the PIT Tag Information System (PTAGIS; http://www.ptagis.org).

3.2. Detection Probabilities at Prosser and McNary

The probability of detection of juvenile summer Chinook at McNary Dam varied among years (Table 4). Of the five groups released in 2022, only the group released at Roza Dam exhibited a lower detection rate (12.79% \pm 2.63). However, the other four groups had relatively similar detection rates at McNary Dam (see Table 5). Specifically, when comparing the detection rates between the two groups reared in circular and traditional raceways (table 5 and 6), the circular-reared group had a rate of 27.77% \pm 7.47, while the traditional raceways-reared group had a rate of 26.19% \pm 6.78.

When examining the variability in the detection rate at McNary Dam across different years (Table 4), it becomes apparent that this variation may be attributed to the operational practices of surface-passage structures. The detection rate at Columbia River dams is contingent on the percentage of fish that access juvenile bypass systems where detectors are installed. In recent years, there has been a notable increase in the use of spill and the implementation of surface-passage structures (such as spillway weirs) as a primary management strategy to enhance the survival of juvenile fish navigating the dams within the Federal Columbia River Power System. This increased reliance on spillways results in a reduced proportion of fish entering juvenile bypass systems where PIT tags can be detected (Widener et al. 2018). Consequently, fluctuations in spill and flow can give rise to variable detection rates across different years or within a single migration season.

Table 4. Annual detection and survival probabilities for summer Chinook (in percent) at Prosser and McNary Dam with standard errors, (SE) during the period from 2010 through 2022. Enumeration of fish fate (detection events) is coded by detection (1) and no detection (0). For example, for the McNary Dam: the code "1.0.1" means not detected at McNary Dam but detected downstream of McNary Dam, "1.1.0" means detected at McNary Dam but not detected downstream, and "1.1.1" means detected at both McNary Dam and downstream. "N" is the total number of PIT-tagged summer chinook released.

				Pro	sser Dam				Mc	Nary Dam	
Year	N	Dete	ction eve	ents	Detection Prob. %	Survival Prob%	Det	ection e	vents	Detection Prob. %	Survival Prob%
		1.0.1	1.1.0	1.1.1			1.0.1	1.1.0	1.1.1		
2010	29747	667	4712	359	34.99 ± 1.4	48.72 ± 2.02	700	865	161	18.69 ± 1.3	18.4 ± 1.2
2011	49365	2392	1187	87	3.5 ± 0.3	73.54 ± 7.47	2295	2151	328	12.50 ± 0.65	40.16 ± 1.9
2012	26562	891	2242	126	25.12 ± 2.91	64.09 ± 5.20	1469	830	187	11.29 ± 0.7	30.2 ± 1.9
2013	30186	1210	8171	413	28.57 ± 0.3	100 ± 0.0	920	1360	288	23.9±1.2	22.9±1.1
2014	30524	278	5506	150	35.04 ± 2.3	52.87 ± 3.4	300	361	67	18.3±2	7.68 ± 0.8
2015	33829	17	662	0	1.95 ± 0.0	NA	27	15	2	6.88 ± 4.7	0.72 ± 0.46
2016	35546	2163					932	1933	230	19.8 ± 1.16	30.74 ± 1.7
2017	17534	289	2098	96	24.93 ± 0.2	50.18 ± 4.36	604	308	77	11.3 ± 1.21	19.4 ± 1.88
2018	30130	126	1749	14	10.00 ± 2.5	58.51 ± 14.7	123	11	27	18 ± 3.14	2.58 ± 0.41
2019	41151	185	3161	40	17.77 ± 2.5	43.75 ± 6.24	334	199	26	7.22 ± 1.36	7.57 ± 1.35
2020	12820	66	1342	30	31.25 ± 4.7	35.94 ± 5.3	203	81	15	6.88 ± 1.71	11.42 ± 2.63
2021	66233	523	4229	62	43.80 ± 4.23	$28.65 {\pm}\ 2.76$	88	848	14	4.17 ± 0.68	21.14 ± 3.3
2022	31173	658	2962	198	43.82 ± 2.65	23.14 ± 1.44	85	451	33	27.97±4.13	12.71 ± 1.8

NA indicates model convergence issue due to no downstream detections

Table 5. Summary of yearling and sub-yearling summer chinook releases, detections, survival and travel time by release group to McNary Dam for 2021 and 2022. "Det.Prob%", "Surv. Prob%" and "travel time" are the detection probability ±SE at McNary Dam, survival probability ± SE from the release location McNary Dam and the travel time (days) from the release location to the Dam, respectively. "PRO", "MCJ", "JDJ" and "BON" are the number of PIT tags detected at Prosser, McNary, John Day and Bonneville dams, respectively. "N" is the total release number with PIT tags.

							No. of Fish detection at		tion at	Release L	ocation to Mc	Nary Dam	
Mig.										BON			Travel time
Year	Stock	Life Stage	Rearing	Release location	Release date	N	PRO	MCJ	JDJ	(B2J+BCC)	Det. Prob.%	Surv.Prob.%	(min-max)
2021	Wells	Yearling	Marin Drain	Prosser	7-May-2021	20649		329	254	593	3.87±0.79	41.09 ±8.11	4 (1-34)
2021	Wells	Subyearling	Prosser Hat	Prosser	24-Apr-2021	15012		119	176	121	2.47 ± 1.41	31.97 ±8.80	30 (5-47)
2021	Wells	Subyearling	Prosser Hat	Wapatox (in River)	30-Apr-2021	15815	2050	86	88	83	7.22 ± 2.84	7.52 ± 2.86	35 (9-52)
2021	Wells	Subyearling	Prosser Hat	Wapatox (in Canal)	30-Apr-2021	14766	1787	51	104	65	6.15 ± 2.98	5.61 ± 2.98	37 (21-52)
2022	Eastbank	Subyearling	Prosser Cir. Race	Prosser	9-May-2022	5206		64	116	29	27.77 ± 7.47	20.03 ± 3.17	39 (21-51)
2022	Eastbank	Subyearling	Prosser Trad. Race	Prosser	9-May-2022	5240		53	58	38	26.19 ± 6.78	14.16 ± 2.04	44 (20-65)
2022	WELLS/EN	Subyearling	Prosser	Roza Dam	20-May-2022	13808	1261	273	209	66	12.79±2.63	25.75 ± 5.38	42 (19-66)
2022	WELLS/EN	Subyearling	Marion Drain	Nelson (Buckskin)	10-May-2022	3543	305	118	81	44	29.54 ± 6.87	18.34 ±4.17	44 (25-64)
2022	WELLS/EN	Subyearling	Prosser	Wapatox	23-May-2022	13822	1594	116	101	45	28.26 ±6.66	5.35 ±1.23	43 (27-66)

Table 6. Detection rate at McNary Dam (MCJ) for yearling and sub-yearling summer Chinook released from 2010 to 2022.

Detection Probability at McNary Dam (MCJ)

Migration	a	5 11:	Marion	_	_	Yakima		
year	Stiles	Buckskin	drain	Roza	Prosser	mouth	Wapatox	Pooled
2010	18.7 ± 1.3							18.7 ± 1.32
2011	10.9 ± 1	13.5 ± 0.9						12.5 ± 0.6
2012		9.5 ± 1.1	12.6 ± 1.3		12.4 ± 1.7			11.29 ± 0.7
2013		25.7 ± 1.6		21.5 ± 1.9	11.8 ± 7.8			23.89 ± 1.2
2014		18.7 ± 2.3		14.1 ± 4.3	33.3 ± 15.7	NA		18.25 ± 2
2015		0.9485±156		0.022±0.001	19.8 ± 1.2			6.88 ± 4.7
2016					12.5 ± 3.7			19.79 ± 1.16
2017								11.3 ± 1.21
2018				18 ± 3.3			18.2 ± 11.6 $0.939 \pm$	18 ± 3.14
2019		5.6 ± 5.4		5.9 ± 2.4	7.9 ± 1.7		18570*	7.22 ± 1.36
2020		6.2 ± 2.7		6.7 ± 2.6	8.5 ± 4.1			6.88 ± 1.71
2021					0.61 ± 0.42 (yearling); 2.48 ± 1.14 (Subyearling);		6.15±2.98 (Pipe); 7.22±2.84 (River)	4.18 ± 0.68
2022		29.54±6.87		12.79±2.63	27.77 ±7.47 (Circu); 26.19± 6.78 (Tradi);		28.26 ±6.66	27.96 ± 4.13

^{*} Model convergence issue due to no downstream detections.

Note: Some juveniles were detected at John Day Dam but not detected at BON. The number of detections attributed to Bonneville Dam includes fish that were detected either at John Day Dam (JDJ), Bonneville Dam (B2J or BCC), or by the Estuary Towed Experimental Array (TWX).

3.3. Juvenile Release-Prosser and McNary Survival Rate

3.3.1. Annual juvenile Survival rate

The annual survival rate of juvenile summer Chinook from release site to Prosser and McNary Dam varied among years (Figure 3; Tables 4 and 7). The highest average annual survival rate at McNary Dam was in 2011 ($40.15\pm1.94\%$); and the lowest survival rate was in 2015 ($0.73\pm0.47\%$) and the same trend was followed by the Prosser Dam (73.64 ± 7.47 in 2011 and 1.95 ± 0 in 2015). In terms of last year (2022) release groups, the average annual survival rate from all release locations to McNary was $12.71\%\pm1.8\%$, marking a decrease compared to the preceding two years (2020-2021). Furthermore, the survival rate from the release location to Prosser Dam showed a consistent

decrease from 2018 to 2022, as depicted in Figure 3. Specifically, when comparing the two groups (circular versus traditional raceways), the survival rate was higher for the group reared in circular raceways (27.77% \pm 7.47) than for the group reared in traditional raceways (26.19% \pm 6.78, see table 5 and 8).

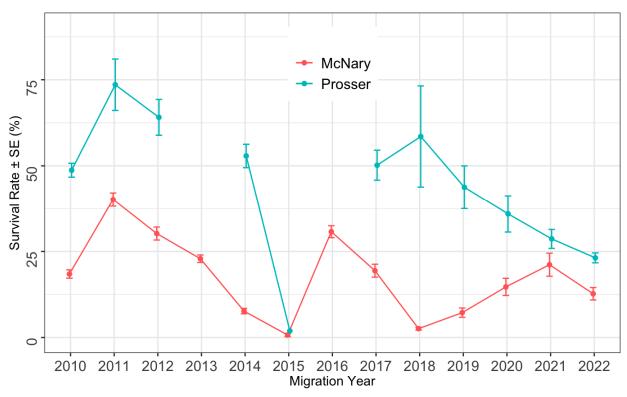


Figure 3. Average annual survival rate (release site to Prosser (green) and release site to McNary Dam (red) for juvenile summer Chinook released from 2010 through 2022. In some years the survival rate to Prosser is missing in the figure as no fish were released above Prosser in those years or very few fish were detected at Prosser.

Table 7. Total release, survival rate from release locations to McNary Dam and its standard error (SE) and the average river flow in May and June of each year from 2010 through 2022.

Outmigration	Released fish	Survival Ra	te (%)	Average River flow
/Release Year	with PIT tags	Average	SE	(cfs) (May & June)
2010	29747	18.44	1.22	2896
2011	49321	40.15	1.94	9305
2012	29821	30.20	1.89	7102
2013	30186	22.89	1.09	3842
2014	30524	7.68	0.79	3131
2015	33829	0.73	0.47	699
2016	35546	30.74	1.73	2559
2017	17534	19.41	1.88	5400

2018	30028	2.58	0.41	4064	
2019	41071	7.22	1.35	1307	
2020	12729	14.70	2.50	1795	
2021	66233	21.15	3.34	2265	
2022	41609	12.71	1.8	4311	

We further explored whether Yakima River flow below Prosser Dam had an effect on survival rate. We built the univariate relationship between the average river flow in May and June and the annual survival rate, and found that survival rate was strongly influenced by the May and June average river flow (R²=0.47, p=0.01, see Figure 4). It indicates that survival rate was a function of river flow, however the river flow was able to explain only about 47% of the annual variation in survival rate. Other factors such as temperature or predation or interactions between temperature might also have affected the survival rate, but these variables were not included in the model. Further investigations, especially into how release period and fish size affected survival rate, are discussed in Section 3.3.4. (Effect of release period and fish size on survival).

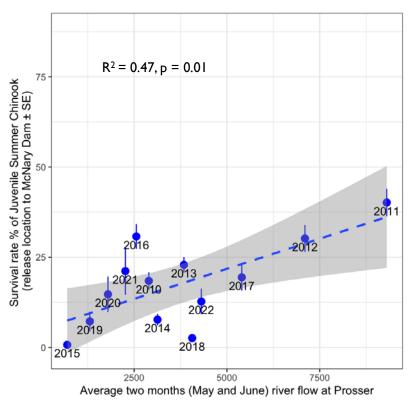


Figure 4. Relationship between average May-June river flow and the annual survival rate of juvenile summer Chinook from all release sites to McNary Dam for the years 2010 through 2022. Each point with error bar is the average survival rate and its 95% confidence interval (CI) for each year. The dotted line with the shaded area is the predicted linear trend (survival rate vs. river flow) and its 95% CI.

3.3.2. Survival rate among release locations

As mentioned above, the average annual survival rate from all release sites to McNary Dam and Prosser Dam varied by year. The survival rate also varied by release location (Table 8 and Figure 5). From 2009 through 2022, the highest average survival rate (from release location to McNary) was for the sub-yearling group released from Buckskin (43.7) in 2011 and, the second highest average survival rate was for the group released in Prosser (41±8.1%) in 2021, and the third highest average survival rate was for the Stiles pond group (39.2%) in 2012 (figure 5). The lowest survival rate was for the group that was released from the Wapatox Canal (also adjacent to the Naches River) in 2018 and 2019 (0.15±0.14%, Figure 6). These poor results were caused by extremely low water velocity in the canal delaying fish exit to the river. When we deployed a pipe from the mobile acclimation units directly to the bypass pipe leading from the canal to the river in in 2021, avoiding the slack water in front of the canal's fish screens, then the survival rate improved.

In 2022, the survival rates among the five groups varied. The highest survival rate was observed in the group released from Roza (25.7% \pm 5.4) although the detection rate was low compared to other release groups, followed by the group released from Prosser, which was reared in circular raceways and had the second-highest survival rate (20.0% \pm 3.2). The Buckskin group came in third and the group with rearing in traditional raceway was in fourth (14.16% \pm 2.0), with a lower survival rate, and the lowest rate was found in the Wapatox group (5.3% \pm 1.2, see Table 8).

Initially, it was expected that the group released from Prosser would have a higher survival rate than the other groups due to its shorter travel distance. However, the Roza group actually exhibited a higher survival rate. While it's challenging to pinpoint the exact reasons for this difference, factors such as release timing and brood stock might have played a role. Notably, the Roza group was released approximately 10 days later than the Prosser group, and the brood stock for the Roza group was Wells, whereas for the Prosser group, it was Eastbank. These factors could have influenced the outcomes.

Table 8. Survival rate (%) of summer Chinook from each release site to McNary Dam from 2009 through 2022 for the 7 release sites. The survival rate and its standard Error (SE) are given for the 2019 and 2021 estimates. Early, Mid and Late releases correspond to the period through May 10; May 11 through May 25; and the period after May 25 respectively.

	Sti	lles		Buckskii	n	Marion drain		Roza		Prosser		Yakima River Mouth	Wapatox
Year	Mid	Late	Earl v	Mid	Late	Mid	Earl V	Mid	Late	Early	Mid	Early	Mid
2009		1.5											
	19.7												
2010													
2011	39.7		43.7										
2012				37.2		35.8					20.8		
2013_				29.8					20.9				
2014				18.3	3.2				4.8				
2015				0.01	0		0.07	0		2.6			
2016												31.2	
2017								19.4			19.6		
2018								4.9					0.3
				2.3				11.0					
2019_				±2.1				±4.2			17.9 ±3.7		00
2020				13.6 ± 3.4				15.0 ±5.6			16.9±5.5		
										41.1±8.1¹;			7.52±2.8³;
2021										31.1±8.8 ²			5.6±2.94
										20.0±3.2			
				18.3				25.7		(circ) 14.16±2.0			
2022				±4.2				±5.4		(trad)			5.3±1.2

Note: the survival rate estimates from 2009 through 2018 are from a previous report (Neeley 2019, Appendix G).1 indicates Yearling released in Prosser, 2: indicates sub-yearling released in prosser.3 indicates released in diversion canal, and 4 indicates released fish in Naches river near Wapatox. "circ" and "trad" represent circular raceways and traditional raceways, respectively.

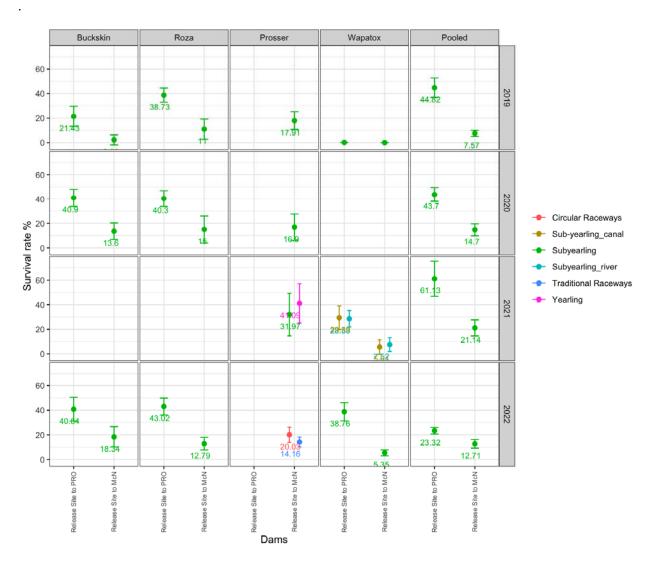


Figure 5. Juvenile summer Chinook survival rate from each release site-to-Prosser Dam, from Prosser-to-McNary Dam, and from release site-to-McNary from 2019 through 2022.

3.3.4. Effect of release month and fish size on survival

The results showed that release months of smaller fish affected their survival to Prosser. For example, for fish measuring 50mm released in April, the survival rate to Prosser Dam exceeded 50%, whereas 50mm fish released in June had a survival rate of approximately 10% (Figure 6, first panel). However, for the largest fish, there seemed to be no effect of release timing on the survival rate.

From Prosser-to-McNary Dam (right panel of Figure 6), the relationship of fish size to survival rate was similar for April and May releases, but release in June depressed the Prosser-to-McNary survival

rate over the entire range of fish sizes. Standard errors for the groups released in April and May were large, which might be due to small sample size. As mentioned in 3.1., the sample size was relatively low for the groups released in April (2,155) and June (1,844) compared to May releases (38,874).

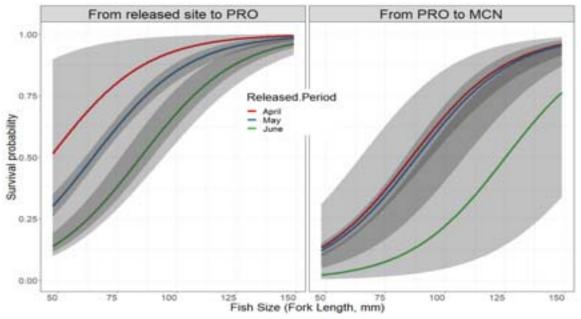


Figure 6. Effect of release period and fish size on the rate of survival from upstream release sites to Prosser Dam, and for all groups from Prosser Dam to McNary Dam. The shaded area is the standard Error (SE).

3.4. Travel time and rate of migration

Summer Chinook generally exhibited immediate outmigration behavior after release, regardless of age and release date, but later outmigrants showed greater urgency. Comparing sub-yearling and yearling ages in 2021, yearlings took less time to reach McNary than sub-yearlings. The range of travel time for yearlings from Prosser to McNary Dam was from 1 to 30 days with the average of 4 days; whereas the range for sub-yearlings was from 5 to 47 days with a mean of 30 (Table 3). In 2022, all individuals were sub-yearlings but their travel times varied slightly among different groups, particularly between the group raised in circular raceways and those raised in traditional raceways. The median travel time to reach McNary was only 39 days for the circular raceways group, whereas other release groups (releasing from Prosser which was reared in traditional raceways, as well as those released from Roza Dam, Buckskin, and Wapatox) took approximately 42 to 43 days (see table 5).

Among the release months (excluding yearling group), travel times from Prosser Dam to Bonneville Dam for the groups released in April were about 73.08 ± 37.77 days, whereas the fish released in June took only 32.70 ± 9.89 days to reach Bonneville Dam (Table 9).

Table 9. Travel days \pm SE and rate of travel (km/day \pm SE) from Prosser to Bonneville Dam for the groups released in April, May and June from 2010 through 2020.

Release	Number of	Travel days	Rate of migration
Month	PIT Tags	•	(km/day)
April	24,555	73.08±37.77	7.19±0.10
May	28,318	65.08 ± 14.03	8.15 ± 0.04
June	20,140	32.70 ± 9.89	16.64 ± 0.03

The distance between Prosser Dam and Bonneville Dam is normally given as 381 rkm and the rate of travel over that distance was 7.19 km/day for the group released in April; but the rate more than doubled (16.64 km/day) for the group released in June. The slower rate of travel for earlier releases indicates that fish released earlier spent more time in-river in order to go through the series of physiological and morphological changes that allow for a transition to life in salt water. Before entering the ocean, anadromous species must change their osmoregulation process, undergoing physical adaptations of their gills and kidneys that build a tolerance to salt water. The study suggests that regardless when they were released, summer Chinook seemed to enter the ocean at nearly the same time, although outmigration survival rate was higher for the early release.

3.5 Recovered PIT tags on Bird Islands

Figure 7 displays 13 bird nesting colonies where PIT tag recoveries were undertaken to assess avian predation. The data consistently reveal a substantial incidence of avian predation on Yakima Basin summer Chinook, as detailed in Table 8. For instance, in 2017, out of a total of 17,539 PIT tags summer chinook released, 403 fish were detected at McNary Dam, while 660 fish were retrieved on Badger Island. Similarly, in 2022, among the 48,451 PIT tags released during that year, 619 summer Chinook PIT tags were identified at McNary Dam, while a significant 1,441 PIT tags were recovered on Badger Island. Notably, the highest tag recovery on Badger Island in the last five years occurred in 2021, totaling 1,441 PIT tags.

It's crucial to recognize that PIT tags found on islands represent only a fraction of the tagged fish preyed upon by avian predators. This is because tags may be excreted in other locations, not all tags on the islands may have been detected, tags can be displaced from nesting areas due to factors such as high tides in the Columbia River estuary, storms, or high-water events, and they may also suffer damage or become lost during the nesting season. The consistent pattern of increased fish recapture in bird colonies strongly suggests a significant predation impact. Therefore, it is imperative that we take action to address the predation issue in the Yakima River basin.

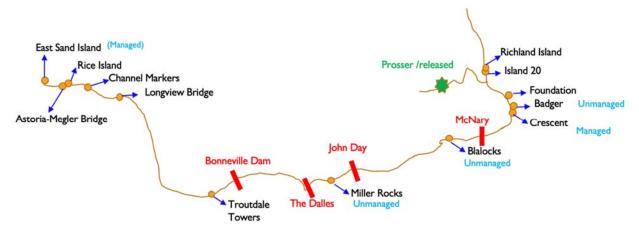


Figure 7. Schematic of mark–recapture–recovery sites of PIT-tagged Coho released in Yakima Basin for the migration year 2022.

Table 8. The number of recaptured Summer Chinook Pit tags in bird nesting islands in the Columbia River basin for the last 5 years (2017-2021). Recovery locations include "RICHIS" = Richland Island, "FOUNDI"= Foundation Island, "BADGER"= Badger Island, "CRESIS"= Crescent Island, "CBLAIS"=Central Blalock Island, "MLRSIN", = Miller Sands Island, "LMILS"= Little Miller Island, "ASMEBR"= Astonia-Megler-Bridge, "ESANIS"=East Sand Island, and "POTH"= Potholes Reservoir. "%" is the percent of the fish recaptured in Islands to the total release PIT tags summer chinook in the Yakima basin.

		Det	ect. at I	Dams			Recapt	tured i	in Isla	nds (2	AVIA	N pre	dation	1)		
Year	N	MCJ	JDJ	BON	RICHIS	FOUNDI	BADGEI	CRESIS	CBLAIS	MLRSNI	CMILIS	ASMEBR	ESANIS	РОТН	Total	%
2017	17539	403	361	423	6	8	670		43		,	,	4		731	4.17
2018	30130	143	103	169	10	2	608		11		2		5		638	2.12
2019	41151	233	187	186	36	35	1167		15	3	3		9		1268	3.08
2020	12814	169	219	169	1	7	177				1	0	4	0	190	1.48
2021	66233	585	622	862	51	96	981	1	13	4	30	19	23	1	1219	1.84
2022	48451	619	574	192	11	38	1441	19	6	1	29	2	29		1576	3.25

3.6. Smolt-to-Adult Returns

SAR which is the percentage of smolts that survive and return to spawn and captures most of the cumulative impacts of the hydro system and ocean condition on fish, telling us how sustainable the returns of adults are over time. The SAR estimate was based on the percentage of smolts detected at Bonneville Dam that returned as adults to Bonneville Dam. In general, the SAR varied by year during the study period. The highest SAR was for the fish released in 2011 (10.24±1.14%) and 2012 (4.24±0.09%), whereas it was zero for the group released in 2015 (see Table 10). The groups of fish released in other years averaged about 1% SAR from Bonneville juvenile to Bonneville adult. The variation in SAR among years can be associated with many factors such as smolt length, release timing, ocean conditions etc. Since SAR and juvenile survival both were high in 2011 and 2012 compared to other years, the higher SAR seems to be related to higher juvenile downstream survival.

Table 10. Smolt-adult returns (based on Juvenile and adult detection at Bonneville Dam) for each release over migration years 2010-2018. The value with yellow color indicates the value is subject to revision if 4-ocean adults may return in 2022 from the 2019 releases.

			Marion			Yakima		
Year	Stiles	Buckskin	Drain	Roza	Prosser	Mouth	Wapatox	Pooled data
2010	1.25							1.25
2011	10.19	10.22						10.22
2012		4.10	3.29		6.90			4.24
2013		2.08		1.46				1.80
2014		0.69		0.00				0.53
2015								Drought year
2016				0.88	1.96	1.08		1.08
2017				0.88 ± 0.49	1.97 ± 1.9	00		1.02 ± 0.53
							$1.01 \pm$	
2018				1.67 ± 1.20	2.01 ± 0.7	70	0.91	1.5 ± 0.45
2019								
2020			With incon	nplete returns, no	SAR was ca	lculated for 2	019-2021 rel	eases
2021								

3.7. Age-at-return distribution

From the total of 1104 returning adult fish with PIT tags were detected at Bonneville Dam from 2009 through 2017, 64% were age 4 (3-year ocean age), 23% of the returns were age 3 (2- ocean), 9% were age 5 (4- ocean) and less than 1% were age of 6 (5-year ocean age). Four percent of the juveniles detected at Bonneville returned as jacks (age 2, 1-ocean; Table 11).

Table 11. Total number of PIT-tagged sub-yearling fish detected at return to Bonneville Dam by ocean age (years). Values shaded yellow are subject to change based on 4-ocean returns.

Migration Year	Number of returning adults						Percentage				
	Age1Y	Age2Y	Age3Y	Age4Y	Age5Y	Total	AgelY	Age2Y	Age3Y	Age4Y	Age5Y
2010	7	21	79	19	0	126	5.56	16.67	62.70	15.08	0.00
2011	33	170	339	53	2	597	5.53	28.48	56.78	8.88	0.34
2012	0	19	106	32	0	157	0.00	12.10	67.52	20.38	0.00
2013	1	49	40	8	0	98	1.02	50.00	40.82	8.16	0.00
2014	1	2	14	1	0	18	5.56	11.11	77.78	5.56	0.00
2016	4	26	47	2	0	79	5.06	32.91	59.49	2.53	0.00
2017	2	3	24	0	0	29	6.90	10.34	82.76	0.00	0.00

2018	3	24	52	1	0	80	3.75	30	65	1.25	0
2019											
2020											
2021											
2022	With incomplete returns, no Age was calculated for 2019-2022 releases										
Average							4.17	23.95	64.11	7.73	0.04

4. Acknowledgment

We thank all of the crews whose collective fish-tagging efforts over the years made this study possible. We are also grateful to David Lind who reviewed, edited and provided valuable comments in the draft report. We would also like to thank Daylen Isaac who provided the hydrological data.

5. Reference

- Conner, MM, S. N. Bennett, W. C. Saunders, and N. Bouwes. 2015. Comparison of tributary survival estimates of steelhead using Cormack-Jolly-Seber and Barker models: Implications for sampling effort and designs. Transactions of the American Fisheries Society, 144:1, 34—47.
- Laake, J. 2013 'RMark: an R interface for analysis of capture-recapture data with MARK'. SeattleWA: US Department of Commerce, National Oceanic and Atmospheric Administration,National Marine Fisheries Service, Alaska Fisheries Science Center.
- Lebreton, JD, Burnham, KP, Clobert, J & Anderson, DR. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies, Ecological Monographs, 62, pp. 67-118.
- Neeley, D. 2012. Prosser-Passage Estimation Issues. Appendix F in Sampson, Fast, and Bosch, Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report for the Performance Period May 1, 2011 through April 30, 2012. Yakama Fisheries, Toppenish, WA.
- Tuomikoski, J, J. McCann, B. Chockley, H. Schaller, S. Haeseker, J. Fryer, R. Lessard, C. Petrosky, E. Tinus, T. Dalton, and R. Ehlke. 2013. Comparative survival study (CSS) of PIT-tagged spring White, GC., and K. P. Burnham. Program MARK: survival estimation from populations of marked
- White, GC., and K. P. Burnham. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement): 120—138.
- Widener, DL., James R. Faulkner, Steven G. Smith, Tiffani M. Marsh, and Richard W. Zabel. 2018. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and

- Columbia River Dams and Reservoirs, 2017. Northwest Fisheries Science Center, NOAA. Submitted to Bonneville Power Administration, 2018 February
- Williams, B. K., Nichols, JD, & Conroy, MJ. 2002. Analysis and Management of Animals Populations. San Diego, CA: Academic Press.
- Zabel, RW, Achord S. 2004. Relating size of juveniles to survival within and among populations of Chinook salmon. Ecology 85:795–806
- Zydlevski, GB, Stich DS & McCormick SD. 2014.Photoperiod control of downstream movement of Atlantic salmon Salmo salar smolts. Journal of Fish Biology 85: 1023–1041.